engin to co

 $I \xrightarrow{\omega} [p] \xrightarrow{x} [n]$

(18.3)

(18.4)

469

 $d(\psi p) > 0$. Finding P is equivalent to finding the minimal solution of the system of equations

with $\omega \in \Omega_p$ and $d\psi = k - 1$. Since $d\psi = \sum d(\psi i) \ i = 1, \dots, p$ we must

have $d(\psi i) > 0$ for some i. Without loss of generality, assume that

$$X = XP \tag{17.1}$$

in subsets $X = (X_1, \dots, X_n)$ of A_0 . The equation (17.1) may be rewritten as

$$X = XR + (X\psi_1, \cdots, X\psi_p)\omega M, \qquad (17.2)$$

where $\psi_i = \psi_i$. We now consider the system of n+1 equations with n+1 unknowns

We now consider the system of
$$n + 1$$
 equations with $n + 1$ unknowns as follows:

$$X = XR + (X\psi_1, \cdots, X\psi_{p-1}, X_{n+1})\omega M$$

$$X_{n+1} = X\psi_p,$$
(17.3)

where
$$X = (X_1, \dots, X_n)$$
. It is clear that if $X = (X_1, \dots, X_n)$ is the minimal solution of (17.2), then $(X_1, \dots, X_n, X_{n+1})$ with $X_{n+1} = X\psi_p$ is the minimal solution of (17.3).

whose constituents are: (1°) compositions $I \xrightarrow{\gamma} [n] \xrightarrow{f} [n+1].$

The right-hand side of (17.3) yields a polynomial $Q: [n+1] \rightarrow [n+1]$

where
$$\gamma$$
 is a constituent of P different from ϕ and f is an inclusion; (2°) morphisms $\tau: I \to [n+1]$ satisfying $0 < d\tau < k$. By the above, $\bar{Q}_i = \bar{P}_i$ for $i = 1, \dots, n$.

for $i = 1, \dots, n$. An iteration of the above procedure yields the conclusion of Proposition 2.

$$Q_i = \{\phi \mid \phi \colon I \to \emptyset, \quad i \in \zeta_A \phi\}.$$

Then
$$Q_i \subset A_0$$
 and we wish to show that $Q = \bar{P}$ where $Q = (Q_1, \dots, Q_n)$. We first show that $\bar{P} \subset Q$. For this, it suffices to show that $QP \subset Q$; i.e., that

 $(Q_1, \dots, Q_n)\phi \subset Q_n$ whenever $\phi \in P_n$.

with $\omega \in \Omega_p$, x is a mapping in S_0 and $i \in (x1, \dots, xp)\omega$.

Let $\phi \in P_i$. Then ϕ is the composition

Thus we must show that

Let then

Then $xj \in \zeta_A \psi_j$ for $j = 1, \dots, p$, and

 $\psi_j \in Q_{xj} \qquad j=1,\cdots,p$

 $\psi = (\psi_1, \dots, \psi_n) : [p] \to \emptyset.$

 $i \in (x_1, \dots, x_p)_{\omega} \subset (\zeta_{\mathcal{A}}\psi_1, \dots, \zeta_{\mathcal{A}}\psi_p)_{\omega} = \zeta_{\mathcal{A}}(\psi_{\omega}).$

Consequently, $\psi\omega \in Q_i$, so that (18.1) holds. To show the opposite inclusion, we must prove that

 $(Q_{x1}, \cdots, Q_{xn})\omega \subset Q_i$.

(18.2) if $\phi: I \to \emptyset$ and $i \in \zeta_A \phi$, then $\phi \in \bar{P}_i$. This will be done by induction with respect to the degree of ϕ . First let $d\phi = 1$. Then $\phi \in \Omega_0$ and $i \in \phi_A$. Then the composition the same

 $I \xrightarrow{\phi} \emptyset \rightarrow [n]$

Now assume $d\phi = k > 1$. Let $I \xrightarrow{\omega} [p] \xrightarrow{\psi} [n]$

is in P_i so that $\phi = \phi_{A_0} \in \emptyset P_i$. Thus $\phi \in \bar{P}_i$ as required.

We have

 $i \in \zeta_A \phi = \zeta_A \psi \omega = \zeta_A (\psi 1, \cdots, \psi p) \omega = (\zeta_A \psi_1, \cdots, \zeta_A \psi_p) \omega.$

be the factorization of ϕ with $\omega \in \Omega_p$ and $d\psi = k - 1 > 0$. Then p > 0

 $x:[p] \to [n] = A$ in S_0

 $xj \in \zeta_A \psi j \quad j = 1, \cdots, p$

 $i \in (x_1, \cdots, x_p)\omega$.

Let then

be such that