La virgule flottante, d'Archimède au porte-clés d'Andy Grove

Jean-Michel Muller

Café gourmand scientifique du LIP décembre 2019

Voulant sécuriser ma retraite, j'ai

$$e-1=1.718281828459045235360287471352662497757247093...$$

euros à placer...

je me rends à la Société chaotique de banque, qui fait de la pub pour de nouveaux placements...

À la Société chaotique de banque, le banquier m'explique :

À la Société chaotique de banque, le banquier m'explique :

• la première année, mon capital est multiplié par 1, et on me retire 1 euro pour frais de gestion;

À la Société chaotique de banque, le banquier m'explique :

- la première année, mon capital est multiplié par 1, et on me retire 1 euro pour frais de gestion;
- la deuxième année, mon capital est multiplié par 2, et on me retire 1 euro pour frais de gestion;

À la Société chaotique de banque, le banquier m'explique :

- la première année, mon capital est multiplié par 1, et on me retire 1 euro pour frais de gestion;
- la deuxième année, mon capital est multiplié par 2, et on me retire 1 euro pour frais de gestion;
- la troisième année, mon capital est multiplié par 3, et on me retire 1 euro pour frais de gestion;

. . .

À la Société chaotique de banque, le banquier m'explique :

- la première année, mon capital est multiplié par 1, et on me retire 1 euro pour frais de gestion;
- la deuxième année, mon capital est multiplié par 2, et on me retire 1 euro pour frais de gestion;
- la troisième année, mon capital est multiplié par 3, et on me retire 1 euro pour frais de gestion;
- . . .
- la 25ème année, mon capital est multiplié par 25, et on me retire 1 euro pour frais de gestion;

Au bout de 25 ans, je peux retirer mon argent... est-ce intéressant?

J'ai cherché à calculer ce que serait mon capital au bout de 25 ans. . .

J'ai cherché à calculer ce que serait mon capital au bout de 25 ans. . .

• ma calculette (Casio) : -747895876335 euros ;

J'ai cherché à calculer ce que serait mon capital au bout de 25 ans. . .

- ma calculette (Casio): -747895876335 euros;
- mon ordinateur (Proc. Intel Xeon, compilateur gcc, sous Linux): +1201807247 euros;

J'ai cherché à calculer ce que serait mon capital au bout de 25 ans. . .

- ma calculette (Casio): -747895876335 euros;
- mon ordinateur (Proc. Intel Xeon, compilateur gcc, sous Linux): +1201807247 euros;
- en fait, la « vraie » valeur est d'environ 0.0399 euros. . .

Double conclusion de ce fâcheux épisode

Double conclusion de ce fâcheux épisode

• ne faites pas aveuglément confiance à votre ordinateur;

Double conclusion de ce fâcheux épisode

- ne faites pas aveuglément confiance à votre ordinateur;
- ne faites pas aveuglément confiance à votre banquier.

Notation « scientifique » de nos calculatrices

Notation « scientifique » de nos calculatrices

1,40793653760494 e16 représente $1,40793653760494 \times 10^{16}$, c'est-à-dire :

$$1,40793653760494 \times \underbrace{10 \times 10 \times 10 \times \dots \times 10}_{16 \text{ fois}} = 14079365376049400$$

 \rightarrow Base 10.

Arithmétique virgule flottante

On généralise cela à la base β (qui vaut souvent 2) :

$$x = x_0.x_1x_2\cdots x_p \times \beta^{e_x}$$

(pareil :
$$\beta^3 = \beta \times \beta \times \beta$$
, et $\beta^{-3} = 1/\beta^3$).

Avantages pour le calcul :

- dynamique : représenter de très petits et de très grands nombres de manière compacte;
- algorithmes arithmétiques simples.
 (ce qui n'est pas le cas de tous les systèmes de numération : calculez MMMDCCLXLL × MXLVIII).

Les Mésopotamiens inventent les mantisses. . .

- actuel Irak, vers −2000;
- Système de base 60 (58 tables de multiplication à connaître!);
- pas de zéro « à la fin » : on manipule juste des mantisses (comme si dans notre système 25, 0.025 et 250 avaient la même représentation).

Les Mésopotamiens inventent les mantisses. . .

- actuel Irak, vers −2000;
- Système de base 60 (58 tables de multiplication à connaître!);
- pas de zéro « à la fin » : on manipule juste des mantisses (comme si dans notre système 25, 0.025 et 250 avaient la même représentation).

... et Archimède (-287 - -212) invente les exposants

- Traité l'Arénaire (compteur de sable : arena = sable en Latin);
- nombre de grains de sable qui pourraient remplir l'Univers;
- notation exponentielle pour représenter les ordres de grandeur.

... et Archimède (-287 - -212) invente les exposants

- Traité l'Arénaire (compteur de sable : arena = sable en Latin);
- nombre de grains de sable qui pourraient remplir l'Univers;
- notation exponentielle pour représenter les ordres de grandeur.

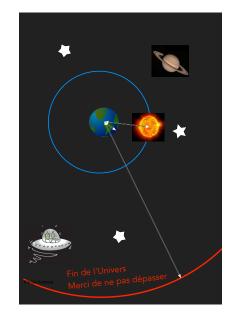
C'est Le génie scientifique de l'antiquité.

... et Archimède invente les exposants

Hypothèse:

rayon Univers distance Terre-Soleil

 $= \frac{\text{distance Terre-Soleil}}{\text{rayon Terre}}$



... et Archimède invente les exposants

- point de départ : savait compter en Grec jusqu'à 10^8 (une myriade de myriades $\mu\nu\rho\iota\alpha\varsigma=10000$);
- nombres de la première période :
 - nombres « premiers » : $1 \rightarrow 10^8$;
 - nombres « seconds » : de la forme 10⁸ × nombre « premier » ;
 - nombres « troisièmes » : de la forme $10^8 \times$ nombre « second » :
 - , . . .
 - . . .
 - jusqu'aux nombres « 10^8 èmes » $\to \Omega = 10^{8\cdot 10^8}$;
- nombres de la deuxième période : $\Omega \times$ nombres de la 1ère période.

Réponse d'Archimède : on fait tenir environ 10⁶³ grains de sable dans l'Univers.

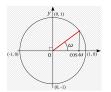
... et Archimède invente les exposants

- point de départ : savait compter en Grec jusqu'à 10^8 (une myriade de myriades $\mu\nu\rho\iota\alpha\varsigma=10000$);
- nombres de la première période :
 - nombres « premiers » : $1 \rightarrow 10^8$;
 - nombres « seconds » : de la forme 10⁸ × nombre « premier » ;
 - ullet nombres « troisièmes » : de la forme $10^8 imes$ nombre « second
 - »;
 - • •
 - jusqu'aux nombres « 10^8 èmes » $\to \Omega = 10^{8\cdot 10^8}$;
- nombres de la deuxième période : $\Omega \times$ nombres de la 1ère période.

Réponse d'Archimède : on fait tenir environ 10⁶³ grains de sable dans l'Univers.

Il n'a pas vraiment fait exprès mais il avait raison!

Au commencement était la trigonométrie. . .



Prostaphérèse:

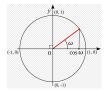
$$\cos(a) \times \cos(b) = \frac{1}{2} \Big(\cos(a+b) + \cos(a-b) \Big)$$

On réalise une bonne fois pour toutes une table des cosinus, et on pourra remplacer les multiplications par des additions!

$$A \times B$$
?

- chercher dans la table a et b t.q. A = cos(a) et B = cos(b);
- calculer s = a + b et d = a b;
- chercher dans la table $S = \cos(s)$ et $D = \cos(d)$;
- le résultat est $\frac{1}{2}(S+D)$.

Au commencement était la trigonométrie. . .



Prostaphérèse:

$$\cos(a) \times \cos(b) = \frac{1}{2} \Big(\cos(a+b) + \cos(a-b) \Big)$$

On réalise une bonne fois pour toutes une table des cosinus, et on pourra remplacer les multiplications par des additions!

$$A \times B$$
?

- chercher dans la table a et b t.q. A = cos(a) et B = cos(b);
- calculer s = a + b et d = a b;
- chercher dans la table $S = \cos(s)$ et $D = \cos(d)$;
- le résultat est $\frac{1}{2}(S+D)$.
- → 4 lectures de table et 3 additions/soustractions : faut vraiment pas aimer les multiplications.
- → Méthode connue de Ibn Jûnus au Xème siècle.

Les logarithmes puis la règle à calculs

 Neper (1650–1617): moyen plus simple de transformer les multiplications en additions

$$\log(a \times b) = \log(a) + \log(b)$$

- Briggs: 1ères tables de logarithmes en 1617;
- Gunter (1624) 10 ans après l'invention des logarithmes.
 Echelle fixe : distances reportées à l'aide d'un compas.

• Règles glissantes : Wingate (1627);

La «notation scientifique» des nombres réels

Première étape : notation a^n pour $a \times a \times \cdots \times a$ – Descartes, dans La Géométrie (il y invente aussi le symbole $\sqrt{\cdot}$). 1637?

LIVRE PREMIER.

200

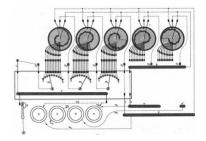
La «notation scientifique» des nombres réels

- à cause de ceci on attribue parfois l'invention de la « notation scientifique » à Descartes;
- Wallis (1665) puis Newton (1669): exposants négatifs, rationnels;
- la notation x^n permet d'écrire un nombre sous la forme $m \times 10^e$, mais cette représentation ne se généralise vraiment qu'au 19ème siècle.

Internet est amusant : sur un site américain la notation scientifique a été inventée par Descartes puis améliorée par Archimède.

Leonardo Torres y Quevedo (1852–1936)

- version électromécanique (à relais) de la machine analytique de Babbage;
- première proposition d'une arithmétique virgule flottante (1914);
- Arithmomètre (1920), opérateurs arithmétiques.



Téléphérique des chutes du Niagara (1916).

Telekino : 1ère (ou 2ème) machine radio-commandée (1901).

Konrad Zuse (1910–1995)

- Z1 (1936–1938) : calculateur mécanique;
- Z2 (1938) : relais électromécaniques (relais de téléphone d'occasion) et mémoire mécanique;

- le Z2 n'était pas fiable mais a suffi comme « preuve de concept » :
 - à convaincre Zuse qu'un calculateur d'envergure était réalisable;
 - à convaincre le DVL (institut allemand d'aéronautique) de financer ses travaux.

Le Z3 (1941)

- arithmétique virgule flottante;
- base 2, nombres sur 22 bits (chiffres binaires) :
 - mantisses de 14 bits;
 - exposants de 7 bits;
 - 1 bit de signe;
- représentations spéciales pour $\pm \infty$ et résultats indéterminés;
- contrairement aux Z1 et Z2, a été complètement opérationnel;
- Zuse ne l'a pas conçu dans cette optique, mais le Z3 était un calculateur universel.

Zuse posant devant une reconstruction du Z3

Quelques autres réalisations de Zuse

 premier langage de programmation de «haut niveau» : le Plankalkül (1942–1946);

```
P1 max3 (V0[:8.0], V1[:8.0], V2[:8.0]) => R0[:8.0]
max(V0[:8.0], V1[:8.0]) => Z1[:8.0]
max(Z1[:8.0], V2[:8.0]) => R0[:8.0]
END
P2 max (V0[:8.0], V1[:8.0]) => R0[:8.0]
V0[:8.0] => Z1[:8.0]
(Z1[:8.0] < V1[:8.0]) ? V1[:8.0] => Z1[:8.0]
Z1[:8.0] => R0[:8.0]
END
```

L'université libre de Berlin a écrit un compilateur en 2000;

 Calculateurs S1 et S2 : aérodynamique de bombes à guidage (précurseurs des V1). Probablement récupérés par l'URSS en 1945.

Zuse était aussi un peintre

Une machine de Turing ni en papier ni en Lego

Le *Pilot ACE*, dont le 1er programme a tourné en mai 1950

- ACE: Automatic
 Computing Engine...

 l'autre machine de Turing;
- National Physics Laboratory, 1946;
- Turing quitte le projet en 1947, Wilkinson en prend le contrôle;
- programmes VF et programmes multi-précision écrits par Alway et W. en 1947,avant même que le Pilot ACE ne fonctionne.

Ensuite c'est le bordel...

- Base : 2, 4, 8, 10, 16, pas la même manière de gérer 1/0, 0/0, $\sqrt{-1}$, etc. ;
- spécification floue des opérations;
- Quand seule la vitesse compte : sur les Crays, le dépassement de capacité était calculé à partir des exposants des entrées, en parallèle avec le calcul effectif du produit
 - → 1 * x peut faire un overflow;
- sur les mêmes, seuls 12 bits de x étaient examinés pour détecter une division par 0 lors du calcul y/x
 - → if (x = 0) then z := 17.0 else z := y/x peut provoquer une erreur « division par zéro »... mais comme le multiplieur aussi ne regarde que 12 bits pour décider qu'une opérande est nulle,

```
if (1.0 * x = 0) then z := 17.0 else z := y/x ne pose plus de problème.
```

Standard IEEE 754-1985

- sous l'impulsion de W. Kahan (Prof. Berkeley);
- choix de la base 2, de formats (32 bits, 64 bits);
- deux idées fortes :
 - système clos : même les opérations « illicites » $(1/0; \sqrt{-5})$ fournissent un résultat, qui doit pouvoir être réutilisable en entrée;
 - arrondi correct : une fonction d'arrondi étant choisie, le calcul en machine de a * b donne

$$\circ$$
(a \star b)

ightarrow amélioration de la *portabilité*, de la *prouvabilité* et de la *qualité* numérique des programmes.

Erreur de l'addition (Dekker)

Théorème 1 (Fast2Sum (Dekker))

(base \leq 3) Soient a et b des nombres VF vérifiant $|a| \geq |b|$. Algorithme suivant : s et r t.q.

- s + r = a + b exactement;
- s est « le » nombre VF le plus proche de a + b.

Programme C 1

```
s = a+b;
z = s-a;
r = b-z;
```

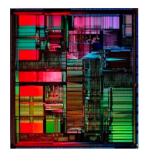
Se méfier des compilateurs « optimisants ».

Arithmétique (presque) bien spécifiée

Tout est prêt pour faire des preuves rigoureuses sauf qu'à l'époque...

- les ingénieurs/scientifiques n'en éprouvent pas vraiment le besoin : ils font de la simulation tranquilles au sol;
- pour prouver un algorithme, il faut le connaître : culte du secret;
- il n'y avait pas encore eu de très gros problème;
- ... et puis chez Intel, Motorola, etc. il y avait à ce moment là un côté « bidouilleur » sympathique mais dangereux.

Automne 1994 : la précision d'une règle à calcul



 Thomas Nicely (Lynchburg Univ.) : constante de Brun

$$\left(\frac{1}{3} + \frac{1}{5}\right) + \left(\frac{1}{5} + \frac{1}{7}\right) + \left(\frac{1}{11} + \frac{1}{13}\right) + \cdots$$

(couples de nombres 1ers jumeaux). Viggo Brun, 1919 : la série converge.

- résultats pas en accord avec les précédents. Dans un tel cas on soupçonne :
 - 1. le programme;
 - 2. le compilateur;
 - 3. en dernier recours le processeur.
- le Pentium donnait un résultat incorrect pour 1/824633702441 (824633702441 et 824633702443 sont jumeaux).

Le « bug » du Pentium

- erreur dans l'algorithme de division (SRT de base 4);
- nombreux quotients faux. Pire cas: 4195835.0/3145727.0 donne 1.33373906802 au lieu de 1.3338204491;
- tempête électronique sur Internet;
- Intel a dû remplacer les Pentium défectueux (coût : peut-être 400M\$);
- la vraie perte a été en termes d'image de marque.

Après ceci : vrai changement de stratégie

- fin du secret sur les algorithmes VF : division de l'Itanium publiée dans les actes d'Arith14 (1999);
- preuve formelle : Intel embauche Harrison, AMD embauche Russinoff.

Que sont les Pentium devenus?

Que sont les Pentium devenus?

D'autres choses en vrac...

- algorithmes Compensés : pour produits scalaire, évaluation de polynômes, arithmétique complexe, etc.
- arrondi correct des fonctions : dilemme du fabricant de tables (Arénaire, depuis 1998 environ);
- coq et flottant (une bonne partie de notre communauté)
- nouvelles moutures (2008 puis 2019) de IEEE 754 :
 - prise en compte de nouveaux opérateurs, de nouveaux algorithmes;
 - gestion de la co-existence de plusieurs formats;
 - meilleure insertion de la VF décimale;
 - nouveautés (recommandation sur fonctions « élémentaires »);
 - spécification de formats à « grande précision ».