Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT

Dominique Fourer¹, François Auger¹, Patrick Flandrin²

¹LUNAM University, IREENA, Saint-Nazaire ²Laboratoire de Physique de l'École Normale Supérieure de Lyon, CNRS

November 2015

Outline

Pilter-based reassigned and synchrosqueezed STFT

3 Recursive implementation

4 Numerical results

STFT implemented as a recursive filtering

Goals

Compute time-frequency representations

- candidate for real-time implementation
- allow adjustments from the user (Levenberg-Marquardt approach)
- allow modes separation and signal reconstruction (synchrosqueezing)
- filter bank approach

Principle

- special case of the STFT using a causal, infinite length window function that can be rewritten as a causal IIR recursive filtering
- the algorithmic complexity depends on the filter order and on the analyzed frequency bandwidth

State-of-the-art

Computing the STFT in terms of recursions

- Recursive STFT [Chen et al.1993], [Amin and Feng, 1995], [S. Tomazic and S.Znidar, 1996, 1997]
- STFT and recursive reassignment (implemented using approximative finite differences) [Richard and Lengellé, 1997]
- STFT and recursive reassignment using a causal infinite window [Nilsen, 2009]

Reassignment

- [Kodera, 1976], [Auger, Flandrin, 1995]
- Levenberg-Marquardt reassigned spectrogram [Auger, Chassande-Mottin and Flandrin2012]

Synchrosqueezing

- synchrosqueezed CWT [Daubechies and Maes, 1996]
- synchrosqueezed STFT [Thakur and Wu, 2011], [Auger et al., 2013]

Dominique Fourer¹, François Auger¹, Patrick Flandrin²

The STFT as a convolution product

The STFT of a signal x using a window h, denoted $F_x^h(t,\omega) = M_x^h(t,\omega) e^{j\Phi_x^h(t,\omega)}$ can be related to the linear convolution product between the analyzed signal x and the complex valued impulse response of a bandpass filter centered on ω , $g(t,\omega)=h(t)e^{j\omega t}$, h(t) being a real-valued analysis window:

$$y_{x}^{\mathcal{B}}(t,\omega) = \int_{-\infty}^{+\infty} g(\tau,\omega) x(t-\tau) \, d\tau = |y_{x}^{\mathcal{B}}(t,\omega)| \, \mathbf{e}^{j\Psi_{x}^{\mathcal{B}}(t,\omega)} \tag{1}$$

$$=F_{x}^{h}(t,\omega)\,\mathbf{e}^{j\omega t}=M_{x}^{h}(t,\omega)\,\mathbf{e}^{j(\Phi_{x}^{h}(t,\omega)+\omega t)} \tag{2}$$

The STFT is related to the convolution product as

$$M_{x}^{h}(t,\omega) = |y_{x}^{g}(t,\omega)|$$
(3)

$$\Phi_x^h(t,\omega) = \Psi_x^g(t,\omega) - \omega t \tag{4}$$

5/19 Dominique Fourer¹, François Auger¹, Patrick Flandrin²

Rewording the reassignment operators of the spectrogram

According to their definition [Kodera, 1976], [Auger, Flandrin, 1995], the spectrogram reassignment operators can be related to the phase of the STFT and can be reformulated using the phase of $y_x^g(t,\omega)$, denoted $\Psi_x^g(t,\omega) = \Phi_x^h(t,\omega) + \omega t$

$$\hat{t}(t,\omega) = -\frac{\partial \Phi_x^h}{\partial \omega}(t,\omega) = t - \frac{\partial \Psi_x^g}{\partial \omega}(t,\omega),$$
(5)

$$\hat{\upsilon}(t,\omega) = \omega + \frac{\partial \Phi_x^h}{\partial t}(t,\omega) = \frac{\partial \Psi_x^g}{\partial t}(t,\omega).$$
(6)

Reassigned spectrogram

$$\mathsf{RSP}(t,\omega) = \iint_{\mathbb{R}^2} |y_x^g(t',\omega')|^2 \delta(t - \hat{t}(t',\omega')) \delta(\omega - \hat{\omega}(t',\omega')) \, dt' d\omega'$$
(7)

where $\delta(t)$ denotes the Dirac distribution.

Rewording the Levenberg-Marquardt reassignment

[Auger, Chassande-Mottin and Flandrin, 2012]

Levenberg-Marquardt reassignment operators

$$\begin{pmatrix} \tilde{t}(t,\omega)\\ \tilde{\omega}(t,\omega) \end{pmatrix} = \begin{pmatrix} t\\ \omega \end{pmatrix} - \left(\nabla^t R_x^h(t,\omega) + \mu I_2 \right)^{-1} R_x^h(t,\omega)$$
(8)

with
$$R_{\mathbf{x}}^{h}(t,\omega) = \begin{pmatrix} t - \hat{t}(t,\omega) \\ \omega - \hat{\omega}(t,\omega) \end{pmatrix} = \begin{pmatrix} \frac{\partial \Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial \omega}(t,\omega) \\ \omega - \frac{\partial \Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial t}(t,\omega) \end{pmatrix}$$

 $\nabla^{t}R_{\mathbf{x}}^{h}(t,\omega) = \begin{pmatrix} \frac{\partial R_{\mathbf{x}}^{h}}{\partial t}(t,\omega) & \frac{\partial R_{\mathbf{x}}^{h}}{\partial \omega}(t,\omega) \end{pmatrix} = \begin{pmatrix} \frac{\partial^{2}\Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial t^{2}}(t,\omega) & \frac{\partial^{2}\Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial \omega^{2}}(t,\omega) \\ -\frac{\partial^{2}\Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial t^{2}}(t,\omega) & 1 - \frac{\partial^{2}\Psi_{\mathbf{x}}^{\mathbf{x}}}{\partial t\partial \omega}(t,\omega) \end{pmatrix}$

where I_2 is the 2 \times 2 identity matrix.

Levenberg-Marquardt reassigned spectrogram

$$\mathsf{LMRSP}(t,\omega) = \iint_{\mathbb{R}^2} |y_x^g(t',\omega')|^2 \delta(t-\tilde{t}(t',\omega')) \delta(\omega-\tilde{\omega}(t',\omega')) \, dt' d\omega' \quad (9)$$

Dominique Fourer¹, François Auger¹, Patrick Flandrin²

Rewording the partial derivatives of the phase

$$\frac{\partial \Psi_{x}^{g}}{\partial t}(t,\omega) = \operatorname{Im}\left(\frac{y_{x}^{\mathcal{D}g}(t,\omega)}{y_{x}^{g}(t,\omega)}\right)$$
(10)

$$\frac{\partial \Psi_{x}^{g}}{\partial \omega}(t,\omega) = \mathsf{Re}\left(\frac{y_{x}^{\mathcal{T}g}(t,\omega)}{y_{x}^{g}(t,\omega)}\right) \tag{11}$$

$$\frac{\partial^2 \Psi_x^g}{\partial t \partial \omega}(t,\omega) = \operatorname{Re}\left(\frac{y_x^{\mathcal{DTg}}(t,\omega)}{y_x^g(t,\omega)} - \frac{y_x^{\mathcal{Dg}}(t,\omega)y_x^{\mathcal{Tg}}(t,\omega)}{y_x^g(t,\omega)^2}\right)$$
(12)

$$\frac{{}^{2}\Psi_{x}^{g}}{\partial t^{2}}(t,\omega) = \operatorname{Im}\left(\frac{y_{x}^{\mathcal{D}^{2}g}(t,\omega)}{y_{x}^{g}(t,\omega)} - \left(\frac{y_{x}^{\mathcal{D}g}(t,\omega)}{y_{x}^{g}(t,\omega)}\right)^{2}\right)$$
(13)

$$\frac{\partial^2 \Psi_x^g}{\partial \omega^2}(t,\omega) = -\operatorname{Im}\left(\frac{y_x^{\mathcal{T}^g}(t,\omega)}{y_x^g(t,\omega)} - \left(\frac{y_x^{\mathcal{T}g}(t,\omega)}{y_x^g(t,\omega)}\right)^2\right)$$
(14)

where y_x^g , $y_x^{\mathcal{T}g}$, $y_x^{\mathcal{D}g}$, $y_x^{\mathcal{D}\mathcal{T}g}$, $y_x^{\mathcal{T}^2g}$ and $y_x^{\mathcal{D}^2g}$ are the outputs of the filters using respectively the impulse responses $g(t,\omega)$, $\mathcal{T}g=tg(t,\omega)$, $\mathcal{D}g(t,\omega)=\frac{\partial g}{\partial t}(t,\omega)$, $\mathcal{D}\mathcal{T}g(t,\omega)=\frac{\partial}{\partial t}(tg(t,\omega))$, $\mathcal{T}^2g(t,\omega)=t^2g(t,\omega)$ and $\mathcal{D}^2g(t,\omega)=\frac{\partial^2 g}{\partial t^2}(t,\omega)$.

8/19

Rewording the synchrosqueezed STFT

As previously defined, y_x^g admits the following signal reconstruction formula

$$x(t-t_0) = \frac{1}{h(t_0)} \int_{-\infty}^{+\infty} y_x^g(t,\omega) \, \mathbf{e}^{-j\omega t_0} \, \frac{d\omega}{2\pi}, \quad \text{when } h(t_0) \neq 0. \tag{15}$$

Synchrosqueezed STFT [Thakur and Wu, 2011], [Auger et al., 2013]

$$Sy_{x}^{g}(t,\omega) = \int_{\mathbb{R}} y_{x}^{g}(t,\omega') \, \mathbf{e}^{-j\omega' t_{\mathbf{0}}} \delta\left(\omega - \hat{\omega}(t,\omega')\right) \, d\omega' \tag{16}$$

 $LMSy_x^g(t,\omega)$ is obtained by replacing $\hat{\omega}$ by $\tilde{\omega}$.

Time-frequency representation

A sharpen time-frequency representation is provided by $|Sy_x^g(t,\omega)|^2$

Signal reconstruction from $Sy_x^g(t, \omega)$

$$\hat{x}(t-t_0) = \frac{1}{h(t_0)} \int_{\mathbb{R}} \operatorname{Sy}_x^g(t,\omega) \, \frac{d\omega}{2\pi} \tag{17}$$

9/19 Dominique Fourer¹, François Auger¹, Patrick Flandrin²

The STFT special case [Nilsen, 2009]

 y_x^g can be recursively implemented using

$$h_k(t) = \frac{t^{k-1}}{T^k(k-1)!} \,\mathbf{e}^{-t/T} \,U(t),\tag{18}$$

$$g_k(t,\omega) = h_k(t) \,\mathbf{e}^{j\omega t} = \frac{t^{k-1}}{T^k(k-1)!} \,\mathbf{e}^{pt} \,U(t) \tag{19}$$

with $p = -\frac{1}{T} + j\omega$, $k \ge 1$ being the filter order, T the time spread of the window and U(t) the Heaviside step function.

Discretization using the impulse invariance method [Jackson, 2000]

$$G_{k}(z,\omega) = T_{s}\mathcal{Z} \{g_{k}(t,\omega)\} = \frac{\sum_{i=0}^{k-1} b_{i} z^{-i}}{1 + \sum_{i=1}^{k} a_{i} z^{-i}}$$
(20)

with $b_i = \frac{1}{L^k(k-1)!} B_{k-1,k-i-1} \alpha^i$, $\alpha = \mathbf{e}^{pT_s}$, $L = T/T_s$, $a_i = A_{k,i} (-\alpha)^i$, T_s being the sampling period. $B_{k,i} = \sum_{j=0}^i (-1)^j A_{k+1,j} (i+1-j)^k$ denotes the Eulerian numbers and $A_{k,i} = \binom{k}{i} = \frac{k!}{i!(k-i)!}$ the binomial coefficients.

Hence, using $y_k[n,m] \approx y_x^{g_k}(nT_s, \frac{2\pi m}{MT_s})$ with $n \in \mathbb{Z}$ and m = 0, 1, ..., M - 1, we obtain

$$y_k[n,m] = \sum_{i=0}^{k-1} b_i \times [n-i] - \sum_{i=1}^k a_i y_k[n-i,m]$$
(21)

11/19 Dominique Fourer¹, François Auger¹, Patrick Flandrin²

other specific impulse responses

Recursive relations between filters

$$T_s \mathcal{Z}\{\mathcal{T}g_k(t,\omega)\} = k T G_{k+1}(z,\omega)$$
(22)

$$T_s \mathcal{Z} \left\{ \mathcal{D}g_k(t,\omega) \right\} = \frac{1}{T} G_{k-1}(z,\omega) + p G_k(z,\omega)$$
(23)

$$T_{s}\mathcal{Z}\left\{\mathcal{D}\mathcal{T}g_{k}(t,\omega)\right\} = k\left(G_{k}(z,\omega) + pTG_{k+1}(z,\omega)\right)$$
(24)

$$T_{s}\mathcal{Z}\left\{\mathcal{T}^{2}g_{k}(t,\omega)\right\} = k(k+1)\mathcal{T}^{2}G_{k+2}(z,\omega)$$
(25)

$$T_s \mathcal{Z}\left\{\mathcal{D}^2 g_k(t,\omega)\right\} = \frac{1}{T^2} G_{k-2}(z,\omega) + \frac{2p}{T} G_{k-1}(z,\omega) + p^2 G_k(z,\omega)$$
(26)

for any $k \ge 1$, provided that $G_0(z, \omega) = G_{-1}(z, \omega) = 0$.

Discrete-time recursive classical reassigned spectrogram

Reassignment operators

$$\hat{n}[n,m] = n - \text{Round}\left(\text{Re}\left(\frac{T_s^{-1}y_x^{\mathcal{T}g}[n,m]}{y_x^g[n,m]}\right)\right)$$
(27)
$$\hat{m}[n,m] = \text{Round}\left(\frac{M}{2\pi}\text{Im}\left(\frac{T_s y_x^{\mathcal{D}g}[n,m]}{y_x^g[n,m]}\right)\right)$$
(28)

Reassigned spectrogram

$$\mathsf{RSP}_{k}[n,m] = \sum_{n' \in \mathbb{Z}} \sum_{m'=0}^{M-1} |y_{k}[n',m']|^{2} \,\delta\left[n - \hat{n}[n',m']\right] \,\delta\left[m - \hat{m}[n',m']\right] \quad (29)$$

where $\delta[n]$ is the Kronecker delta

Discrete-time recursive Levenberg-Marquardt reassigned spectrogram

Levenberg-Marquardt reassignment operators

$$\begin{split} \tilde{n}[n,m] &= n - \operatorname{Round} \left(\frac{1}{\Lambda} \left(T_s^{-1} \frac{\partial \Psi_x^g}{\partial \omega} \right) \left(1 + \mu - \frac{\partial^2 \Psi_x^g}{\partial t \partial \omega} \right) \right. \\ &\left. - \frac{1}{\Lambda} \left(T_s^{-2} \frac{\partial^2 \Psi_x^g}{\partial \omega^2} \right) \left(\frac{2\pi m}{M} - T_s \frac{\partial \Psi_x^g}{\partial t} \right) \right) \end{split} \tag{30} \\ \tilde{m}[n,m] &= m - \operatorname{Round} \left(\frac{M}{2\pi \Lambda} \left(T_s^{-1} \frac{\partial \Psi_x^g}{\partial \omega} \right) \left(T_s^2 \frac{\partial^2 \Psi_x^g}{\partial t^2} \right) \right. \\ &\left. + \frac{1}{\Lambda} \left(\mu + \frac{\partial^2 \Psi_x^g}{\partial t \partial \omega} \right) \left(m - \frac{M T_s}{2\pi} \frac{\partial \Psi_x^g}{\partial t} \right) \right) \end{aligned} \tag{31} \\ \Lambda &= \left(\mu + \frac{\partial^2 \Psi_x^g}{\partial t \partial \omega} \right) \left(\mu + 1 - \frac{\partial^2 \Psi_x^g}{\partial t \partial \omega} \right) + \left(T_s^2 \frac{\partial^2 \Psi_x^g}{\partial t^2} \right) \left(T_s^{-2} \frac{\partial^2 \Psi_x^g}{\partial \omega^2} \right) \end{split}$$

Hence, LMRSP_k[n, m] is obtained by replacing (\hat{n}, \hat{m}) by (\tilde{n}, \tilde{m}) .

with

Discrete-time recursive synchrosqueezed STFT

Recursive synchrosqueezed STFT

$$Sy_{k}[n,m] = \sum_{m'=0}^{M-1} y_{k}[n,m'] \, \mathbf{e}^{-\frac{2j\pi m' n_{0}}{M}} \delta\left[m - \hat{m}[n,m']\right]$$
(32)

where $n_0 = t_0/T_s$ can be chosen as the time instant $t_0 > 0$ when the maximum of h_k is reached (*i.e.* $n_0 = (k - 1)L$). LMSy_k[n,m] is obtained by replacing (\hat{n}, \hat{m}) by (\tilde{n}, \tilde{m}) .

Signal reconstruction from $Sy_k[n,m]$

$$\hat{x}[n-n_0] = \frac{1}{MT_s h_k(n_0 T_s)} \sum_{m=0}^{M-1} Sy_k[n,m].$$
(33)

For modes extraction, for example [Meignen et al., 2012] can be used.

Implementation issue

Algorithm for recursive TFR computation

At time index n

- Compute the required $y_k^g[n, m]$ using x[n-i] and $y_k[n-j, m]$ with $i \in [0, k-1], j \in [1, k]$
- **Output** Compute the other required specific filtered signals (*i.e.* $y_k^{\mathcal{T}g}$, $y_k^{\mathcal{D}g}$, $y_k^{\mathcal{D}\mathcal{T}g}$, y_k^{\mathcal
- **②** Compute \hat{n}, \hat{m} (resp. \tilde{n}, \tilde{m}) provided by the reassignment operators
- If $\hat{n} \le n$ (resp. $\tilde{n} \le n$) then update TFR[\hat{n}, m] otherwise store the triplet $(y_k^g[n, m], \hat{n}, m)$ into a list
- **9** Update TFR[n, m] using all previously stored triplets verifying $\hat{n} \le n$ and remove them from the list

Time-frequency representations

Signal reconstruction quality

Reconstruction Quality Factor

$$RQF = 10 \log_{10} \left(\frac{\sum_{n} |x[n]|^2}{\sum_{n} |x[n] - \hat{x}[n]|^2} \right)$$
(34)

(a)	<i>n</i> 0	8	18	26	28	30
	RQF (dB)	9.79	24.17	26.77	26.82	26.73
(b)	М	100	200	600	1000	2400
	RQF (dB)	20.56	24.90	29.48	30.50	30.87
(c)	μ	0.30	0.80	1.30	1.80	2.30
	RQF (dB)	20.83	27.28	29.68	30.35	30.90

Signal reconstruction quality factor of the recursive synchrosqueezed STFT computed for k = 5, L = 7 at SNR = 45 dB. Line (a), computed for M = 300, Line (b) and Line (c), computed for n0=28 and M=300. Reference recursive STFT reconstruction RQF = **35.56** dB.

Results

- The first recursive implementation of the synchrosqueezing transform
- A new generalized STFT synthesis formula allowing reconstruction using a causal analysis window
- Adjustable methods allowing to choose a trade-off between the energy concentration and the signal reconstruction quality

Future works

- New practical applications (e.g. audio speech enhancement, Music Information Retrieval, Electrical loads recognition, etc.)
- Recursive second-order synchrosqueezing [Oberlin et al., 2015]
- Usage of a different analysis window