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Exponential families (EF) and Bregman Divergence (BD)

Exponential families (EF) of distributions

F(x10) =exp{(0,t(x)) — F(0) +g(x)},x € Qx,

with

® t(x), the sufficient statistic,
6 € Po, with dimension D (the order of the family), the natural parameter
F(.), the log-normalizer, F(0) = log fo exp ((0, t (x)) + g (x)) dx
g(.), the carrier measure.
n =n(0) = VF(0), the expectation parameters.
Examples : Gaussian, Wishart, Poisson, Rayleigh, ... laws (see [1])
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Exponential families (EF) of distributions

F(x10) =exp{(0,t(x)) — F(0) +g(x)},x € Qx,

with
® t(x), the sufficient statistic,
6 € Po, with dimension D (the order of the family), the natural parameter
F(.), the log-normalizer, F(0) = log fo exp ((0, t (x)) + g (x)) dx
g(.), the carrier measure. )
n =n(0) = VF(0), the expectation parameters.

Examples : Gaussian, Wishart, Poisson, Rayleigh, ... laws (see [1])

Example: univariate Gaussian distribution

= (%7 _%) = (01702)

20

o t(x) = (x,x*), m= (u,0%),
2
o F(§) = (—4%12 Liog (_%)
* g(x)=0
e _(_e 1, 6 _ 2 2
n = (m,n2) 2050 20, T agg) = (10" + 1)
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Exponential families (EF) and Bregman Divergence (BD)

EF and Bregman Divergence (BD) (see [1] and [2])

f(x[0) = exp {=dr- (t(x), n)} be-(t(x)), x € Qx,

® dr-, the Bregman divergence associated with F*, the conjugate function
(Legendre dual) of F, which is a strictly convex function :

dr=(m,m2) = F*(m) — F*(m2) — (m — m2, VF" (112)) = dr(62,061)

For EF, KL(91,92) = d/:* (771,772) = dF(02,91)

F*(n) = sup {(n,t) = F(2)}

0 =0(n) =VF*(n)
b+ (t(x)) = exp (F*(t(x)) + g(x))
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EF and Bregman Divergence (BD) (see [1] and [2])

f(x[0) = exp {=dr- (t(x), n)} be-(t(x)), x € Qx,

® dr-, the Bregman divergence associated with F*, the conjugate function
(Legendre dual) of F, which is a strictly convex function :

dr=(m,m2) = F*(m) — F*(m2) — (m — m2, VF" (112)) = dr(62,061)

For EF, KL(01,92) = d/:* (771,772) = dF(02,91)

F*(n) = sup {(n,t) = F(2)}

o 0=0(n)=VF*(n)
o be-(t(x)) = exp (F*(t(x)) + &(x))

Example: univariate Gaussian distribution

® F*(n) = —1%log (1} —m2) + C avec n = (m1,m2) = (p, 0% + 1%)
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Exponential families (EF) and Bregman Divergence (BD)

Bregman divergence and information geometry [1, 2, 3]

e For different convex functions:
e Quadratic form distances (Euclidean, Mahalanobis, ...) which are
the only symmetric Bregman divergences.
o Kullback-Leibler divergence (KL),

o ...
e For two members, 01 and 65, of the same exponential family :
f(x|0
KL(91,92) = / f(X \91)|og <(|1)> dX = dF(92,01) = dF*(nl»"h)
f(x]02)

e Meaning of Kullback-Leibler divergence:
o Relative entropy between f (x|61) and f (x[62)
@ Cencov [4] proved that the only Riemannian metric that “makes
sense” for statistical manifolds is the Fisher information metric.
@ When 0> is closed to 61
2KL(01,02) = 102 = b2l (1 + o(1)),
with ||.||, the norm based on the Fisher information metric.
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Exponential families (EF) and Bregman Divergence (BD)

BD and information geometry [3]

e Computation of centroids for K parametric distributions:
o left-sided centroid (for natural parameters)

K

1 K g OszF(Gk)
_ = _ * k=1

0, = arg 0@9@ % kgﬂ de(0,0k) = VF

K
> Ok
k=1

o right-sided centroid (for natural parameters)

K

1 K > b

O = in — Y dr(0i,0) = =
R argergg]eK; F (0, 0) o

> ak
k=1

e symmetric centroid (belongs to the geodesic link between 6,
and 0g)

7/42
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Exponential families (EF) and Bregman Divergence (BD)

Computation of Bregman centroids

Example in a Gaussian univariate case [5]

018

= = = Inital Gaussians

= Right-sided centroid
016 = Left-sided centroid ||
s Symmctric centroid

0.06}

60

. ;
e Right-sided centroid
o Left-sided centroid

@ Symmetric centroid
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Mixture model

Mixture model

e x = {Xs}sen, samples of i.i.d. (independently and identically
distributed) random vectors with dimension p.

f(x)=T1f0s)
seN
¢ General hypothesis: the distribution of each sample is a
mixture with K components.

f(x)=fx(x) = D fxk) (1)
kek

= > f(x0k)P(k) (2)

keK

"4 K number of components, unknown a priori.
M ay = P(k) “a priori” probability of kth component,
K
2=t Ok = L.
Y4 6y natural parameters of component k and

9/42 Ok = {ok, Ok fk=1, k-
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Mixture model

Approach developped in [1, 2, 5]

e Initialization:
e Fix K = Kpax, the maximum number of components.
e Bregman hard clustering (kmeans based on Bregman
divergence)
— First estimation of {a k..., 01 Kuae H1=1,  Kiax-
e Bregman soft clustering (An EM type algorithm based on
Bregman divergence)
— Final estimation of {a/ k... 01 Kuux } =1,  Kopax -
e Bregman hierarchical clustering (fast simplification process)
e Choice of the Bregman divergence and associated cendroid
e Choice of the linkage criterion
— Estimation of K (K using IC) and {a, 2,0, z},_1 .. z-
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IC(K)

I A formulation justified by theory of information.

—2logf (x

Representation

oM K) + p(Exl,N)

K' = arg min IC (K)
K

Complexity
ML for Maximum Likelihood. N is the number of samples.
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Estimation of number of components

IC and principle of parsimony

12/42

I A formulation justified by theory of information.

IC(K)

~2logf (x|} K) + p(l&xl,N)

Representation

K'® = argmin IC (K)
K

Complexity

ML for Maximum Likelihood. N is the number of samples.

"I« Typical curves obtained in the case of nested models:

ML term

Dimension of the model

Conclusion
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Estimation of number of components

IC and principle of parsimony
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I A formulation justified by theory of information.

IC(K)

~2logf (x|} K) + p(l&xl,N)

Representation

K'® = argmin IC (K)
K

Complexity

ML for Maximum Likelihood. N is the number of samples.

"I« Typical curves obtained in the case of nested models:

ML term ML term + penalty term

Chosen model

Dimension of the model Dimension of the model

Conclusion
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Estimation of number of components

Criteria for the estimation of K (see [6])

"« “Classical” form:

IC (K) = —2log (£ <x‘éK)) + C(N)P(K)

P (K) number of free parameters.
o AIC (Akaike Information Criterion, 1074) : C(N) = 2
derived using KL divergence
© BIC (Bayesian Information Criterion, Schwarz 1078) : C(N) = log N
O Pp (EI Matouat, Hallin 1995) : C(N) = NP log log(N) avec 8 = %.
I Other forms:

o ICOMP (Information complexity criterion - Bozdogan 93).

O ICL (Integrated Completed Likelihood - Biernacki, Celeux, Govaert 2000) :
BIC + estimated mean entropy.

o MML (Minimum Message Length - Figueiredo, Jain 2002).

X IC + Piecewise Linear Regression (PLR) (see [7]).
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Directional distributions in R”

Von Mises-Fisher distribution

x € RP with ||x||, = 1. Set of parameters: 6

Definition

f(x|0)= Cp(k)exp (/ﬁ,uTx>

0 = {k, p} with k concentration parameter and p mean direction.

® Von Mises distribution for p = 2: Cp(k) = 575 and

' x = cos (x — )
Io(x) modified Bessel function of order 0.

p=3: G(r) =

using polar coordinates, C,(k) = ==— otherwise.

s
47 sinh k sinh K

kp/2—1
p> 3: Cp(,"’{,) = 7(270’)/2/;7/271(&)

Applications found in electric field, geology, bioinformatics, text
mining, ...
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Directional distributions in R”

Other directional distributions

Conclusion

x € RP with ||x||, = 1. Set of parameters: ¢

Watson distribution

f(x|0)=M (3, %,n)_l exp (H (/LTX)2>

0 = {k, p} with k concentration parameter and p mean direction.
M(.) Kummer function.
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Directional distributions in R”

Other directional distributions

16/42

x € RP with ||x||, = 1. Set of parameters: ¢

Watson distribution

f(x]0)=M(3,5, n)_l exp (m (MTX)2>

Conclusion

0 = {k, p} with k concentration parameter and p mean direction.

M(.) Kummer function.

Fisher-Bingham or Kent distribution (p = 3)

f (x16) = c (. B) exp (] x + B ((uI%)* = (1I%)?))

0 = {k, B, p1, 12, 43} with Kk concentration parameter, (3,

0 < B < &, ellipticity of the contours of equal probability, ;11 mean

direction, p» major axis and p3 minor axis.
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Directional distributions in RP

Examples with p =3

Simulation of three different directional distributions:

von Mises Fisher distributions Woatson distributions

3 classes

Application to depth images: surface normals are unit vectors in
RR3.

o = E E =

17/42
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® t(x)=x

® 0 = kpu, the natural parameters with x = ||0|| and p = &

® F(0) =log <%ﬁl) = log <
® g(x)=0
e 1= (tanh (k) — Ty

sinh(]|0
lefl

)

e
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Directional distributions in R”

Directional distributions and EF
vMF distribution with p = 3, x € S? C R3

® t(x)=x

_0_

® ) = ku, the natural parameters with k = ||0|| and u = 6

* F(0) = g (1) = teg (1)
® g(x)=0
* 1= (tanh (5) — ) s

Watson distribution with x = [x1, %o, . . . ,xp]T € SPLCRP

T
(X) |:X17"'7 p7\/7X1X27"'7\/§XP71XP:|

7
0 =K |:,LL%, o '7,“/?)7 \/§M1/1'27 R \/ilﬁp—llip} Wlth k= HQH
F(6) = log (M (%, g,m))

g(x)=0

N= 5 e
18/42 P M(1,2k) &
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Mixture model and normals of surfaces

Results with an examplar of depth image (VvMF)

Segmentation of a depth image generated by clustering image
normals.

Depth (color coded) Image Normal

S S TR :
(5. 0.46) (6, 0.20)

(7,0.19)

How to choose the number of components automatically 7
19/42
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Mixture model and normals of surfaces

Curves of IC - Mixture of vMF with 7 classes

Conclusion

X0t 7857777 " ) !

5 0 5 55,
e
===} min 5|
s . o s
\ 45
45 \ 15 Y
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35 ‘\ 35
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Curve: BIC, f,.in, ICL PLR, un-weighted W-PLR [1,30]

PLR and Weighted-PLR (proposed development)
k = argmin (wjRMSEef; + w, RMSEight)
k
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Mixture model and normals of surfaces

Curves of IC - depth image
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Curve: BIC, B,.:., ICL

e Proposed W-PLR provides
o MoVMF case: equivalent results as BIC, ¢g,,, or ICL for

simulated data

4 6 8 10 12 14

W-PLR [1,30]

e Watson distribution case: |CL is equivalent or better to

W-PLR (w; =w, = 1)

e Better component selection for real image data

Conclusion
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MBC-vMFMM and MBC-WMM
Validated by a study on synthetic data

(Model Based Clustering for von Mises-Fisher Mixture Model)
(Model Based Clustering for Watson Mixture Model)

| || MBC-VvMFMM | MBC-WMM

1st step Initialization kmeans++ DM
with K = Kmax | EM type procedure BSC BSC
2nd step Distance right-sided BD | right-sided BD
HAC Linkage Average Average
K IC & W-PLR IC & W-PLR

DM: Diametrical clustering.

Dhillon et. Al, (2003), Diametrical Clustering for identifying anti-correlated
gene clusters, Bioinformatics, vol 19, pp. 1612-1619.

Conclusion
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Mixture model and normals of surfaces

Estimation of the number of components MBC-vMFMM

Comparison between MBC-vMFMM and a method containing
state-of-the-art methods called MBC-MoVMF.

Acc (%) Comp. Time (sec)
MBC-MoVMF [ MBC vMFMM | MBC-MoVMF [ MBC-vMFMM
3,ws 87.913 99.992 8.9187 2.953
5,ws 84.487 99.995 8.1757 2.9494
7,ws 76.991 99.994 7.8314 2.8663
3,nws 93.788 99.039 10.74 2.9201
5,nws 90.012 97.156 8.6715 2.9004
7,nws 80.709 92.966 7.9239 2.8822

23/42



Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion
0000000000 00000000e00 0000000

Mixture model and normals of surfaces

Estimation of the number of components MBC-vMFMM

Comparison between MBC-vMFMM and a method containing
state-of-the-art methods called MBC-MoVMF.

Acc (%) Comp. Time (sec)
MBC-MoVMF [ MBC vMFMM | MBC-MoVMF [ MBC-vMFMM
3,ws 87.913 99.992 8.9187 2.953
5,ws 84.487 99.995 8.1757 2.9494
7,ws 76.991 99.994 7.8314 2.8663
3,nws 93.788 99.039 10.74 2.9201
5,nws 90.012 97.156 8.6715 2.9004
7,nws 80.709 92.966 7.9239 2.8822

100 % of correct number of components selection with
MBC-vMFMM using :

® (bﬁminlc
e W-PLR on BIC curve with w; =1 and w, = 300
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Results on depth images (NYU database)

With von Mises-Fisher MM (MBC-vMFMM using W-PLR)

Depth (color coded) Image Normal MBC-vMFMM

24/42
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Results on depth images (NYU database)

With Watson MM (MBC-WMM using W-PLR)
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Mixture Model and RGB-D data

A mixture model for RGB-D data

x = {(xs,p,Xs,c) }sen, samples of i.i.d. (independently and
identically distributed) random vectors with dimension
P = pp + pc-

fxs) =Y P(Ok)f (.0 %, |0k)
keK

Xs,p Can contain spatial positions, depths, normals, ...
Xs,c can be issued from different color spaces.

27/42
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Mixture Model and RGB-D data

A mixture model for RGB-D data

x = {(xs,p,Xs,c) }sen, samples of i.i.d. (independently and
identically distributed) random vectors with dimension
P = pp + pc-

fxs) =Y P(Ok)f (.0 %, |0k)
keK

Xs,p Can contain spatial positions, depths, normals, ...
Xs,c can be issued from different color spaces.

Different hypothesis

® x;p and xs ¢ are not independant
® x;p and xs ¢ are independant

e \What distributions can be used ?

27/42
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Mixture Model and RGB-D data

A first proposal

M4 X v is the normal in s: vMF or W distributions
M4 xs,p is the position in s: Multidimensional Gaussian
M4 xs,c is the color in s using Lab: Multidimensional Gaussian

" Independance assumption 0, = {0k, 0p k,0c k}

Fxs) =Y PO v (xsn [On,ic) fo (xs,p 0P k) fe (xs,c 0c k)
keK

28/42
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Mixture Model and RGB-D data

A first proposal

M4 X v is the normal in s: vMF or W distributions
M4 xs,p is the position in s: Multidimensional Gaussian

M4 xs,c is the color in s using Lab: Multidimensional Gaussian

" Independance assumption 0, = {0k, 0p k,0c k}

Fxs) =Y PO v (xsn [On,ic) fo (xs,p 0P k) fe (xs,c 0c k)
keK

Direct extension of previous method

® The combined BD is the sum of the three BD

® Centroids are computed independantly

28/42
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First results on NYU Database

First results on NYU Database

PRI Vol GCE BDE

N-WMM 0,718 | 3,523 | 0,511 | 12,221
N-VMFMM | 0,726 | 3,770 | 0,540 | 12,555
C-MGMM 0,634 | 3,048 | 0,352 | 17,218
P-MGMM 0,702 | 2,619 | 0,294 | 25,471
N+C+P 0,694 | 2,602 | 0,296 | 23,516

Lower results than the most recent methods.

I PRI: Probabilistic Rand Index. Measuring the likelihood of a pair of
pixels being grouped consistently in two segmentations.

"I Vol: Variation of Information. Computing the amount of information of
one result not contained in the other.

"I GCE: Global Consistency Error. Measuring the extent to which one
segmentation is a refinement of the other.

I* BDE: Boundary Displacement Error. Computing the average
displacement between the boundaries of two segmentations.

29/42
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Results based on aggregation of planar regions

A RAG based method

"I Another exploration of the hierarchy of models based on the
following considerations:
@ The shadow zones are noisy.
@ Some planar regions deserve to be merged.
@ A need to take into account the boundaries of the RGB-D image in
order to limit the merging processus.

"I Block diagram of the proposed method :

= =

JCSA Clustered I:;iaige RAG using BD Final Segmentation

Normal

30/42
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Results based on aggregation of planar regions

A RAG based method - Example of obtained Graph

R ={ri},—;... m» and undirected graph G = (V. E)

"X v;: node i corresponds to region i and is associated with mean direction,
1, and concentration x of Watson distribution.

Y« ej: edge linking nodes i and j associated with two weights based on
statistical dissimilarity, based on Watson distribution, and boundary
strength (12°7(.) normalized gradient value):

wa(vi, ;) = min(Dw(ri, 1), Dw (1, ri))
wp(Vi, vj) = o ZbEr,ﬂrJ £*9(b)

[l
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Results based on aggregation of planar regions

A RAG based method - Proposed algorithm

true, if (a) cand(v;) = true; and
; (B) wp(vis vj) < thoound: and
true, if K(r;) > Kplanar J
cand(v;) = { ’ " pianar P = () wy(vi, vj) < thgst; and
fal th . v " s
alse, otherwise (d) planar outlier ratio > thyatj,

false, otherwise.

Input: R = {ri}iz1,..m. G=(V.E), thyoundary thdaist and thyatio
Output: Final segmentation after region merging.
Compute cand(v;) for {v;}i—1,._ar using Eq. (18);
Seti=1;
foreach i do
if cand(v;) is true then
while no adjacent of v; is left to check do
Sort e;; in ascending order according to wy(v;, vj) ;
Evaluate each v; with the merging predicate P;j (Eq. (19)) ;
if Pj; is true then
Merge two nodes v; and v; and update the RAG;
Start over again from sorting the adjacents.

else
| Check the next node
end
end
end
end
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Results based on aggregation of planar regions
Results on NYU Database
PRI | VOI | BDE | RC

OWT-UCM | 0.89 | 2.60 | 8.87 | 0.56

GBS 0.77 | 2.37 | 16.04 | 0.45

JCSA-HRM | 0.90 | 2.32 | 10.01 | 0.57

Methods

M OWT-UCM: Oriented Watershed Transform - Ultrametric Contour Map (PAMI

2011, CVPR 2012)

It GBS: Graph-Based Segmentation for Colored 3D Laser Point Clouds (2010).
I JCSA-HRM: Joint Color-Spatial-Axial clustering with Hierarchical Region

Merging (proposed method).

Evaluation criteria

"I For PRI, Vol and BDE, see previous slide.

"4 RC: Region (or segmentation) Covering evaluates the region overlaps
between two segmentations (evaluation of the pixel-wise classification

task in recognition).
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Conclusion and perspectives

Conclusion

® An “unsupervised” clustering procedure based on Bregman divergence

for Normals (MoVMF and MoW)

for Normals+Positions+Colors (Independance assumption)
estimation of the number of component with IC and W-PLR based
on BIC curve

accurate results on NYU Database using a RAG based algorithm

M RO
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estimation of the number of component with IC and W-PLR based
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accurate results on NYU Database using a RAG based algorithm

M RO

Perspectives

® Extension to Kent mixtures

® MRF (or CRF, ...) based spatial regularization

e Still improving the management of the hierachy of models
® Exploring the different possible combinations of N, P, C, ...

® Semantic analysis
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Curves of ¢z IC

Number of components vs threshold values (diff number of classes)

x10' Component vs IC values, optimal ->7

Optimal Number of components

41 0 01 02 03 04 05 06 07 08
Range of beta values

' Number of component

Data containing 7 classes. Data containing 3, 5 or 7 classes.

® Kmnax = 15

® |C can be computed using Bregman divergence and a hard clustering of
data using the estimated models with decreasing number of components.
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Clustering accuracy - K is known - vMF-MM

N = 10000
Methods:
e kmeans++ (KMPP)
® Gaussian Mixture Model (GMM)
Spherical kmeans (SPKM)
vMF-MM [Banerjee & al. 2005]
H-vMF-MM (MBC-vMFMM without number of components estimation)

| KMPP | GMM | SPKM | vMF-MM | H-vMF-MM

3cl,ws | 9341 | 91.71 | 98.23 98.92 99.99
5cl,ws | 90.76 | 83.93 | 97.07 97.6 99.99
3cl,nws | 89.58 | 90.5 | 92.25 93.07 99.05
5cl, nws | 85.76 | 86.06 | 93.64 94.96 97.16
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Clustering accuracy - K is known - Watson MM

N = 10000
Methods:
® Diametrical clustering (DM) [Dhillon & al. 2003]
® Mixture of Watson Distributions (MWD) [Bijral & al. 2007]
¢ HWMM (MBC-WMM without number of components estimation)

| DM | MWD | HWMM

2cl, ws | 99.9998 | 99.9998 100

3cl,ws | 98.9932 | 98.0559 | 99.9992
4 cl,ws | 90.9388 | 98.1295 | 99.9909
2cl, nws | 97.1702 | 97.2206 | 97.1998
3cl, nws | 96.7246 | 96.0239 | 92.207
4 cl, nws | 97.9254 | 96.7252 | 98.0496
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Importance of the initialisation

Estimation of the number of components with 1C

10000 sampels, 7 Class -> Comp vs Prob (Max prob: 0.61851 for: 7 comp) IC based analysis on simulated 7 class data; Kmax=15
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Synthetic data containing 7 classes
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Conclusion

Estimation of the number of components (MBC-WMM)
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| CI. Acc | Time | BIC | ¢p,,, | ICL

2, ws 100 12.84 | 66 66 66
3, ws 99.99 12.30 | 100 | 100 | 100
4, ws 99.99 12.58 | 90 90 90
5, ws 99.96 12.84 | 98 98 98
7, ws 99.62 13.37 | 98 98 98
2, nws 97.23 12.47 | 98 100 98
3, nws 96.43 12.64 | 100 | 100 | 100
4, nws 98.06 13.11 | 100 | 100 | 100
5, nws 97.22 13.30 | 100 | 100 | 100
7, nws 91.97 1497 | 100 | 100 | 100
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