
Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion

Model based clustering using color and depth
information

Abul Hasnat (PhD student), Olivier Alata, Alain Trémeau
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Exponential families (EF) and Bregman Divergence (BD)

Exponential families (EF) of distributions

f (x |θ ) = exp {〈θ, t (x)〉 − F (θ) + g (x)} , x ∈ ΩXs

with
• t (x), the sufficient statistic,
• θ ∈ PΘ, with dimension D (the order of the family), the natural parameter
• F (.), the log-normalizer, F (θ) = log

∫
ΩXs

exp (〈θ, t (x)〉+ g (x)) dx

• g(.), the carrier measure.
• η = η(θ) = ∇F (θ), the expectation parameters.

Examples : Gaussian, Wishart, Poisson, Rayleigh, ... laws (see [1])

Example: univariate Gaussian distribution

• t(x) =
(
x , x2

)
, m =

(
µ, σ2

)
, θ =

(
µ
σ2 ,− 1

2σ2

)
= (θ1, θ2)

• F (θ) =
(
− θ2

1
4θ2

+ 1
2

log
(
− π
θ2

))
• g(x) = 0

• η = (η1, η2) =
(
− θ1

2θ2
,− 1

2θ2
+

θ2
1

4θ2
2

)
= (µ, σ2 + µ2)
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Exponential families (EF) and Bregman Divergence (BD)

EF and Bregman Divergence (BD) (see [1] and [2])

f (x |θ ) = exp {−dF∗ (t(x), η)} bF∗(t(x)), x ∈ ΩXs

• dF∗ , the Bregman divergence associated with F ∗, the conjugate function
(Legendre dual) of F , which is a strictly convex function :

dF∗(η1, η2) = F ∗(η1)− F ∗(η2)− 〈η1 − η2,∇F ∗(η2)〉 = dF (θ2, θ1)

For EF, KL(θ1, θ2) = dF∗(η1, η2) = dF (θ2, θ1)
F ∗(η) = sup

t∈PΘ

{〈η, t〉 − F (t)}

θ = θ(η) = ∇F ∗(η)
bF∗(t(x)) = exp (F ∗(t(x)) + g(x))

Example: univariate Gaussian distribution

• F ∗(η) = − 1
2

log
(
η2

1 − η2

)
+ C avec η = (η1, η2) =

(
µ, σ2 + µ2

)
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Exponential families (EF) and Bregman Divergence (BD)

Bregman divergence and information geometry [1, 2, 3]

• For different convex functions:
Quadratic form distances (Euclidean, Mahalanobis, ...) which are
the only symmetric Bregman divergences.
Kullback-Leibler divergence (KL),
...

• For two members, θ1 and θ2, of the same exponential family :

KL(θ1, θ2) =

∫
f (x |θ1 ) log

(
f (x |θ1 )

f (x |θ2 )

)
dx = dF (θ2, θ1) = dF∗(η1, η2)

• Meaning of Kullback-Leibler divergence:
Relative entropy between f (x |θ1 ) and f (x |θ2 )
Cencov [4] proved that the only Riemannian metric that “makes
sense” for statistical manifolds is the Fisher information metric.
When θ2 is closed to θ1

2KL(θ1, θ2) = ‖θ1 − θ2‖2
I (1 + o(1)),

with ‖.‖I the norm based on the Fisher information metric.

6/42



Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion

Exponential families (EF) and Bregman Divergence (BD)

BD and information geometry [3]
• Computation of centroids for K parametric distributions:

left-sided centroid (for natural parameters)

θL = arg min
θ∈PΘ

1

K

K∑
k=1

dF (θ, θk) = ∇F ∗


K∑

k=1

αk∇F (θk)

K∑
k=1

αk


right-sided centroid (for natural parameters)

θR = arg min
θ∈PΘ

1

K

K∑
k=1

dF (θk , θ) =

K∑
k=1

αkθk

K∑
k=1

αk

symmetric centroid (belongs to the geodesic link between θL
and θR)

θS = arg min
θ∈PΘ

1

K

K∑
k=1

1

2
(dF (θ, θk) + dF (θk , θ))
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Exponential families (EF) and Bregman Divergence (BD)

Computation of Bregman centroids

Example in a Gaussian univariate case [5]
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Mixture model

Mixture model
• x = {xs}s∈Λ, samples of i.i.d. (independently and identically

distributed) random vectors with dimension p.

f (x) =
∏
s∈Λ

f (xs)

• General hypothesis: the distribution of each sample is a
mixture with K components.

f (xs) = fK (xs) =
∑
k∈K

f (xs , k) (1)

=
∑
k∈K

f (xs |θk )P(k) (2)

z K number of components, unknown a priori.
z αk = P(k) “a priori” probability of kth component,∑K

k=1 αk = 1.
z θk natural parameters of component k and

ΘK = {αk , θk}k=1,··· ,K .
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Mixture model

Approach developped in [1, 2, 5]

• Initialization:

Fix K = Kmax, the maximum number of components.
Bregman hard clustering (kmeans based on Bregman
divergence)

→ First estimation of {αl,Kmax , θl,Kmax}l=1,··· ,Kmax .

• Bregman soft clustering (An EM type algorithm based on
Bregman divergence)

→ Final estimation of {αl,Kmax , θl,Kmax}l=1,··· ,Kmax .

• Bregman hierarchical clustering (fast simplification process)

Choice of the Bregman divergence and associated cendroid
Choice of the linkage criterion

→ Estimation of K (K̂ using IC) and {αl,K̂ , θl,K̂}l=1,··· ,K̂ .
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Mixture model

Hierarchical clustering
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Estimation of number of components

IC and principle of parsimony

z A formulation justified by theory of information.

IC(K) = −2 log f
(
x
∣∣∣Θ̂ML

K ,K
)

+ p (|ΘK | ,N)

Representation Complexity

K̂ IC = arg min
K

IC (K)

ML for Maximum Likelihood. N is the number of samples.

z Typical curves obtained in the case of nested models:
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Estimation of number of components

Criteria for the estimation of K (see [6])

z “Classical” form:

IC (K ) = −2 log
(
f
(
x
∣∣∣Θ̂K

))
+ C (N)P (K )

P (K ) number of free parameters.

� AIC (Akaike Information Criterion, 1974) : C (N) = 2
derived using KL divergence

� BIC (Bayesian Information Criterion, Schwarz 1978) : C (N) = logN
� φβ (El Matouat, Hallin 1996) : C (N) = Nβ log log(N) avec β = log log N

log N .

z Other forms:

� ICOMP (Information complexity criterion - Bozdogan 93).
� ICL (Integrated Completed Likelihood - Biernacki, Celeux, Govaert 2000) :

BIC + estimated mean entropy.
� MML (Minimum Message Length - Figueiredo, Jain 2002).

z IC + Piecewise Linear Regression (PLR) (see [7]).
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Directional distributions in Rp

Von Mises-Fisher distribution

x ∈ Rp with ‖x‖2 = 1. Set of parameters: θ

Definition

f (x |θ ) = Cp(κ) exp
(
κµT x

)
θ = {κ, µ} with κ concentration parameter and µ mean direction.
• Von Mises distribution for p = 2: Cp(κ) = 1

2πI0(κ)
and

µT x = cos (x − µ)
I0(x) modified Bessel function of order 0.

• p = 3: Cp(κ) = κ
4π sinhκ

using polar coordinates, Cp(κ) = κ
sinhκ

otherwise.

• p > 3: Cp(κ) = κp/2−1

(2π)p/2Ip/2−1(κ)

Applications found in electric field, geology, bioinformatics, text
mining, ...
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Directional distributions in Rp

Other directional distributions

x ∈ Rp with ‖x‖2 = 1. Set of parameters: θ

Watson distribution

f (x |θ ) = M
(

1
2 ,

p
2 , κ
)−1

exp
(
κ
(
µT x

)2
)

θ = {κ, µ} with κ concentration parameter and µ mean direction.
M(.) Kummer function.

Fisher-Bingham or Kent distribution (p = 3)

f (x |θ ) = c (κ, β) exp
(
κµT1 x + β

((
µT2 x

)2 −
(
µT3 x

)2
))

θ = {κ, β, µ1, µ2, µ3} with κ concentration parameter, β,
0 ≤ β < κ, ellipticity of the contours of equal probability, µ1 mean
direction, µ2 major axis and µ3 minor axis.
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Directional distributions in Rp

Examples with p = 3

Simulation of three different directional distributions:

von Mises Fisher distributions Watson distributions

Application to depth images: surface normals are unit vectors in
R3.
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Directional distributions in Rp

Directional distributions and EF

vMF distribution with p = 3, x ∈ S2 ⊂ R3

• t(x) = x

• θ = κµ, the natural parameters with κ = ‖θ‖ and µ = θ
‖θ‖

• F (θ) = log
(

sinh(κ)
κ

)
= log

(
sinh(‖θ‖)
‖θ‖

)
• g(x) = 0

• η =
(
tanh (κ)−1 − κ−1

)
µ

Watson distribution with x = [x1, x2, . . . , xp]T ∈ Sp−1 ⊂ Rp

• t(x) =
[
x2

1 , . . . , x
2
p ,
√

2x1x2, . . . ,
√

2xp−1xp
]T

• θ = κ
[
µ2

1, . . . , µ
2
p,
√

2µ1µ2, . . . ,
√

2µp−1µp

]T
with κ = ‖θ‖

• F (θ) = log
(
M
(

1
2
, p

2
, κ
))

• g(x) = 0

• η = 1
p

M( 3
2
, p+2

2
,κ)

M( 1
2
, p

2
,κ)

θ
κ
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Mixture model and normals of surfaces

Results with an examplar of depth image (vMF)

Segmentation of a depth image generated by clustering image
normals.

How to choose the number of components automatically ?
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Mixture model and normals of surfaces

Curves of IC - Mixture of vMF with 7 classes

PLR and Weighted-PLR (proposed development)

k̂ = argmin
k

(ωlRMSEleft + ωrRMSEright)
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Mixture model and normals of surfaces

Curves of IC - depth image

• Proposed W-PLR provides
MoVMF case: equivalent results as BIC, φβmin or ICL for
simulated data
Watson distribution case: ICL is equivalent or better to
W-PLR (ωl = ωr = 1)
Better component selection for real image data

21/42



Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion

Mixture model and normals of surfaces

Proposed methods

MBC-vMFMM and MBC-WMM
Validated by a study on synthetic data

(Model Based Clustering for von Mises-Fisher Mixture Model)
(Model Based Clustering for Watson Mixture Model)

MBC-vMFMM MBC-WMM

1st step Initialization kmeans++ DM
with K = Kmax EM type procedure BSC BSC

2nd step Distance right-sided BD right-sided BD
HAC Linkage Average Average

K̂ IC & W-PLR IC & W-PLR

DM: Diametrical clustering.

Dhillon et. Al, (2003), Diametrical Clustering for identifying anti-correlated

gene clusters, Bioinformatics, vol 19, pp. 1612-1619.

22/42



Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion

Mixture model and normals of surfaces

Estimation of the number of components MBC-vMFMM

Comparison between MBC-vMFMM and a method containing
state-of-the-art methods called MBC-MoVMF.

Acc (%) Comp. Time (sec)
MBC-MoVMF MBC-vMFMM MBC-MoVMF MBC-vMFMM

3,ws 87.913 99.992 8.9187 2.953
5,ws 84.487 99.995 8.1757 2.9494
7,ws 76.991 99.994 7.8314 2.8663

3,nws 93.788 99.039 10.74 2.9201
5,nws 90.012 97.156 8.6715 2.9004
7,nws 80.709 92.966 7.9239 2.8822

100 % of correct number of components selection with
MBC-vMFMM using :

• φβmin
IC

• W-PLR on BIC curve with ωl = 1 and ωr = 300
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Results on depth images (NYU database)

With von Mises-Fisher MM (MBC-vMFMM using W-PLR)
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Results on depth images (NYU database)

With Watson MM (MBC-WMM using W-PLR)
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Mixture Model and RGB-D data

A mixture model for RGB-D data

x = {(xs,D , xs,C )}s∈Λ, samples of i.i.d. (independently and
identically distributed) random vectors with dimension
p = pD + pC .

f (xs) =
∑
k∈K

P(θk)f (xs,D , xs,C |θk )

xs,D can contain spatial positions, depths, normals, ...
xs,C can be issued from different color spaces.

Different hypothesis

• xs,D and xs,C are not independant

• xs,D and xs,C are independant

• What distributions can be used ?
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Mixture Model and RGB-D data

A first proposal

z xs,N is the normal in s: vMF or W distributions

z xs,P is the position in s: Multidimensional Gaussian

z xs,C is the color in s using Lab: Multidimensional Gaussian

z Independance assumption θk = {θN,k , θP,k , θC ,k}

f (xs) =
∑
k∈K

P(θk)fN (xs,N |θN,k ) fP (xs,P |θP,k ) fC (xs,C |θC ,k )

Direct extension of previous method

• The combined BD is the sum of the three BD

• Centroids are computed independantly
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First results on NYU Database

First results on NYU Database

PRI VoI GCE BDE

N-WMM 0,718 3,523 0,511 12,221
N-VMFMM 0,726 3,770 0,540 12,555
C-MGMM 0,634 3,048 0,352 17,218
P-MGMM 0,702 2,619 0,294 25,471
N+C+P 0,694 2,602 0,296 23,516

Lower results than the most recent methods.

z PRI: Probabilistic Rand Index. Measuring the likelihood of a pair of
pixels being grouped consistently in two segmentations.

z VoI: Variation of Information. Computing the amount of information of
one result not contained in the other.

z GCE: Global Consistency Error. Measuring the extent to which one
segmentation is a refinement of the other.

z BDE: Boundary Displacement Error. Computing the average
displacement between the boundaries of two segmentations.
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Results based on aggregation of planar regions

A RAG based method

z Another exploration of the hierarchy of models based on the
following considerations:

The shadow zones are noisy.
Some planar regions deserve to be merged.
A need to take into account the boundaries of the RGB-D image in
order to limit the merging processus.

z Block diagram of the proposed method :
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Results based on aggregation of planar regions

A RAG based method - Example of obtained Graph

R = {ri}i=1,...,M , and undirected graph G = (V ,E )

z vi : node i corresponds to region i and is associated with mean direction,
µ, and concentration κ of Watson distribution.

z eij : edge linking nodes i and j associated with two weights based on
statistical dissimilarity, based on Watson distribution, and boundary
strength (I rgbdG (.) normalized gradient value):

wd(vi , vj) = min(DW (ri , rj),DW (rj , ri ))
wb(vi , vj) = 1

|ri ⋂ rj |
∑

b∈ri
⋂

rj
I rgbdG (b)
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Results based on aggregation of planar regions

A RAG based method - Proposed algorithm

cand(vi ) =

{
true, if κ(ri ) > κplanar ,

false, otherwise.
Pij =



true, if (a) cand(vj ) = true; and

(b) wb(vi , vj ) < thbound ; and

(c) wd (vi , vj ) < thdist ; and

(d) planar outlier ratio > thratio
false, otherwise.
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Results based on aggregation of planar regions

Results on NYU Database
PRI VOI BDE RC

OWT-UCM 0.89 2.60 8.87 0.56

GBS 0.77 2.37 16.04 0.45

JCSA-HRM 0.90 2.32 10.01 0.57

Methods

z OWT-UCM: Oriented Watershed Transform - Ultrametric Contour Map (PAMI
2011, CVPR 2012)

z GBS: Graph-Based Segmentation for Colored 3D Laser Point Clouds (2010).

z JCSA-HRM: Joint Color-Spatial-Axial clustering with Hierarchical Region
Merging (proposed method).

Evaluation criteria

z For PRI, VoI and BDE, see previous slide.

z RC: Region (or segmentation) Covering evaluates the region overlaps
between two segmentations (evaluation of the pixel-wise classification
task in recognition).
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Outline
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Conclusion and perspectives

Conclusion

• An “unsupervised” clustering procedure based on Bregman divergence

z for Normals (MoVMF and MoW)
z for Normals+Positions+Colors (Independance assumption)
z estimation of the number of component with IC and W-PLR based

on BIC curve
z accurate results on NYU Database using a RAG based algorithm

Perspectives

• Extension to Kent mixtures

• MRF (or CRF, ...) based spatial regularization

• Still improving the management of the hierachy of models

• Exploring the different possible combinations of N, P, C, ...

• Semantic analysis
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Curves of φβ IC

Data containing 7 classes. Data containing 3, 5 or 7 classes.

• Kmax = 15

• IC can be computed using Bregman divergence and a hard clustering of
data using the estimated models with decreasing number of components.
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Clustering accuracy - K is known - vMF-MM

N = 10000
Methods:
• kmeans++ (KMPP)

• Gaussian Mixture Model (GMM)

• Spherical kmeans (SPKM)

• vMF-MM [Banerjee & al. 2005]

• H-vMF-MM (MBC-vMFMM without number of components estimation)

KMPP GMM SPKM vMF-MM H-vMF-MM

3 cl, ws 93.41 91.71 98.23 98.92 99.99
5 cl, ws 90.76 83.93 97.07 97.6 99.99

3 cl, nws 89.58 90.5 92.25 93.07 99.05
5 cl, nws 85.76 86.06 93.64 94.96 97.16
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Clustering accuracy - K is known - Watson MM

N = 10000
Methods:
• Diametrical clustering (DM) [Dhillon & al. 2003]

• Mixture of Watson Distributions (MWD) [Bijral & al. 2007]

• HWMM (MBC-WMM without number of components estimation)

DM MWD HWMM

2 cl, ws 99.9998 99.9998 100
3 cl, ws 98.9932 98.0559 99.9992
4 cl, ws 90.9388 98.1295 99.9909

2 cl, nws 97.1702 97.2206 97.1998
3 cl, nws 96.7246 96.0239 92.207
4 cl, nws 97.9254 96.7252 98.0496

40/42



Clustering with mixtures and BD MBC with directional distributions MBC and RGB-D data Conclusion

Importance of the initialisation

Estimation of the number of components with IC

Synthetic data containing 7 classes
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Estimation of the number of components (MBC-WMM)

Cl. Acc Time BIC φβmin ICL

2, ws 100 12.84 66 66 66
3, ws 99.99 12.30 100 100 100
4, ws 99.99 12.58 90 90 90
5, ws 99.96 12.84 98 98 98
7, ws 99.62 13.37 98 98 98

2, nws 97.23 12.47 98 100 98
3, nws 96.43 12.64 100 100 100
4, nws 98.06 13.11 100 100 100
5, nws 97.22 13.30 100 100 100
7, nws 91.97 14.97 100 100 100
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