Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	0000000	000000000	000000	00000	00000000	000

Adaptive filtering in wavelet frames: application to echo (multiple) suppression in geophysics

S. Ventosa, S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, *L. Duval*, M.-Q. Pham, C. Chaux, J.-C. Pesquet

IFPEN laurent.duval [ad] ifpen.fr SIERRA 2014, Saint-Étienne

2014/03/25

Context •00000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
2/46						

In just one slide: on echoes and morphing

Wavelet frame coefficients: data and model

Figure 1: Morphing and adaptive subtraction required

Context 0●0000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
3/46						

Agenda

- 1. Issues in geophysical signal processing
- 2. Problem: multiple reflections (echoes)
 - adaptive filtering with approximate templates
- 3. Continuous, complex wavelet frames
 - how they (may) simplify adaptive filtering
 - and how they are discretized (back to the discrete world)
- 4. Adaptive filtering (morphing)
 - without constraint: unary filters (on analytic signals)
 - with constraints: proximal tools
- 5. Conclusions

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	00000000	000000000	000000	00000	00000000	000
4/46						

Figure 2: Seismic data acquisition and wave fields

Context 000●00	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
5/46						

Figure 3: Seismic data: aspect & dimensions (time, offset)

Context 0000●0	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
6/46						

Figure 4: Seismic data: aspect & dimensions (time, offset)

Reflection seismology:

- seismic waves propagate through the subsurface medium
- seismic traces: seismic wave fields recorded at the surface
 - primary reflections: geological interfaces
 - many types of distortions/disturbances
- processing goal: extract relevant information for seismic data
- led to important signal processing tools:
 - ℓ_1 -promoted deconvolution (Claerbout, 1973)
 - wavelets (Morlet, 1975)
- exabytes (10^6 gigabytes) of incoming data
 - need for fast, scalable (and robust) algorithms

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
8/46						

Figure 5: Seismic data acquisition: focus on multiple reflections

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
8/46						

Figure 5: Reflection data: shot gather and template

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
9/46						

Multiple reflections:

- seismic waves bouncing between layers
- one of the most severe types of interferences
- obscure deep reflection layers
- high cross-correlation between primaries (p) and multiples (m)
- additional incoherent noise (n)
- d(t) = p(t) + m(t) + n(t)
 - with approximate templates: $r_1(t)$, $r_2(t)$,... $r_J(t)$
- Issue: how to adapt and subtract approximate templates?

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
10/46						

Figure 6: Multiple reflections: data trace d and template r_1

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
11/46						

Multiple filtering:

- multiple prediction (correlation, wave equation) has limitations
- templates are not accurate

•
$$m(t) \approx \sum_{j} h_j * r_j$$
?

• standard: identify, apply a matching filer, subtract

$$\mathbf{h}_{\text{opt}} = \operatorname*{arg\,min}_{\mathbf{h} \in \mathbb{R}^l} \|d - \mathbf{h} * \mathbf{r}\|^2$$

- primaries and multiples are not (fully) uncorrelated
 - same (seismic) source
 - similarities/dissimilarities in time/frequency
- variations in amplitude, waveform, delay
- issues in matching filter length:
 - short filters and windows: local details
 - long filters and windows: large scale effects

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
12/46						

Figure 7: Multiple reflections: data trace, template and adaptation

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	00000000	000000000	000000	00000	00000000	000
13/46						

Figure 8: Multiple reflections: data trace and templates, 2D version

Context 000000	Multiple filtering 000000●0	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
14/46						

- A long history of multiple filtering methods
 - general idea: combine adaptive filtering and transforms
 - data transforms: Fourier, Radon
 - enhance the differences between primaries, multiples and noise
 - reinforce the adaptive filtering capacity
 - intrication with adaptive filtering?
 - might be complicated (think about inverse transform)
- First simple approach:
 - exploit the non-stationary in the data
 - naturally allow both large scale & local detail matching
- \Rightarrow Redundant wavelet frames
 - intermediate complexity in the transform
 - simplicity in the (unary/FIR) adaptive filtering

Context 000000	Multiple filtering 000000●	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
15/46						

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega) \widehat{f}(\omega)$$

Context 000000	Multiple filtering 000000●	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
15/46						

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega) \widehat{f}(\omega)$$

Context 000000	Multiple filtering 000000●	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
15/46						

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega) \widehat{f}(\omega)$$

Context 000000	Multiple filtering 000000●	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
15/46						

Reminders [Gabor-1946][Ville-1948]

$$\widehat{\mathcal{H}{f}}(\omega) = -\imath \operatorname{sign}(\omega) \widehat{f}(\omega)$$

Context 000000	Multiple filtering	Wavelets •00000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
16/46						

Continuous & complex wavelets

Figure 10: Complex wavelets at two different scales — 1

Context 000000	Multiple filtering	Wavelets 00000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
17/46						

Continuous & complex wavelets

Figure 11: Complex wavelets at two different scales — 2

Context 000000	Multiple filtering	Wavelets 00●000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
18/46						

• Transformation group:

```
affine = translation (\tau) + dilation (a)
```

Basis functions:

$$\psi_{\tau,a}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-\tau}{a}\right)$$

- *a* > 1: dilation
- a < 1: contraction
- $1/\sqrt{a}$: energy normalization
- multiresolution (vs monoresolution in STFT/Gabor)

$$\psi_{\tau,a}(t) \xrightarrow{\mathrm{FT}} \sqrt{a} \Psi(af) e^{-i2\pi f\tau}$$

Context 000000	Multiple filtering	Wavelets 000●00000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
19/46						

• Definition

$$C_s(\tau, a) = \int s(t)\psi^*_{\tau, a}(t)dt$$

• Vector interpretation

$$C_s(\tau, a) = \langle s(t), \psi_{\tau, a}(t) \rangle$$

projection onto time-scale atoms (vs STFT time-frequency)

- Redundant transform: $\tau \rightarrow \tau \times a$ "samples"
- Parseval-like formula

$$C_s(\tau, a) = \langle S(f), \Psi_{\tau, a}(f) \rangle$$

 \Rightarrow sounder time-scale domain operations! (cf. Fourier)

Context 000000	Multiple filtering	Wavelets 0000●0000	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
20/46						

Introductory example

inaginary par

Figure 12: Noisy chirp mixture in time-scale & sampling

Context 000000	Multiple filtering	Wavelets 00000●000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
21/46						

Noise spread & feature simplification (signal vs wiggle)

Figure 13: Noisy chirp mixture in time-scale: zoomed scaled wiggles

Context 000000	Multiple filtering	Wavelets 000000●00	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
22/46						

Figure 14: Which morphing is easier: time or time-scale?

Context 000000	Multiple filtering	Wavelets 0000000●0	Discretization, unary filters	Results 00000	Going proximal	Conclusions 000
23/46						

• Inversion with another wavelet ϕ

$$s(t) = \iint C_s(u, a)\phi_{u, a}(t) \frac{duda}{a^2}$$

 \Rightarrow time-scale domain processing! (back to the trace signal)

Scalogram

$$|C_s(t,a)|^2$$

Energy conversation

$$E = \iint |C_s(t,a)|^2 \frac{dtda}{a^2}$$

• Parseval-like formula

$$\left\langle s_1, s_2 \right\rangle = \iint C_{s_1}(t, a) C^*_{s_2}(t, a) \frac{dtda}{a^2}$$

Context 000000	Multiple filtering	Wavelets 00000000●	Discretization, unary filters	Results 00000	Going proximal	Conclusions
24/46						

• Wavelet existence: admissibility criterion

$$0 < A_h = \int_0^{+\infty} \frac{\hat{\Phi}^*(\nu)\Psi(\nu)}{\nu} d\nu = \int_{-\infty}^0 \frac{\hat{\Phi}^*(\nu)\Psi(\nu)}{\nu} d\nu < \infty$$

generally normalized to 1

- Easy to satisfy (common freq. support midway $0 \& \infty$)
- With $\psi = \phi$, induces band-pass property:
 - necessary condition: $|\Phi(0)| = 0$, or zero-average shape
 - amplitude spectrum neglectable w.r.t. $|\nu|$ at infinity
- Example: Morlet-Gabor (not truly admissible)

$$\psi(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{t^2}{2\sigma^2}} e^{-i2\pi f_0 t}$$

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters •00000	Results 00000	Going proximal	Conclusions 000
25/46						

Being practical again: dealing with discrete signals

• Can one sample in time-scale (CWT) domain:

$$C_s(\tau, a) = \int s(t)\psi_{\tau, a}^*(t)dt, \quad \psi_{\tau, a}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-\tau}{a}\right)$$

with $c_{j,k}=C_s(kb_0a_0^j,a_0^j),\;(j,k)\in\mathbb{Z}$ and still be able to recover s(t)?

- Result 1 (Daubechies, 1984): there exists a wavelet frame if $a_0b_0 < C$, (depending on ψ). A frame is generally redundant
- Result 2 (Meyer, 1985): there exist an orthonormal basis for a specific ψ (non trivial, Meyer wavelet) and $a_0 = 2$ $b_0 = 1$

Now: how to choose the practical level of redundancy?

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	0000000	000000000	00000	00000	00000000	000
26/46						

Figure 15: Wavelet frame sampling: J = 21, $b_0 = 1$, $a_0 = 1.1$

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	0000000	000000000	00000	00000	00000000	000
26/46						

Figure 15: Wavelet frame sampling: J = 5, $b_0 = 2$, $a_0 = \sqrt{2}$

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	0000000	000000000	00000	00000	0000000	000
26/46						

Figure 15: Wavelet frame sampling: J = 3, $b_0 = 1$, $a_0 = 2$

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
27/46						

Figure 16: Redundancy selection with variable noise experiments

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
28/46						

• Complex Morlet wavelet:

$$\psi(t) = \pi^{-1/4} e^{-i\omega_0 t} e^{-t^2/2}, \, \omega_0$$
: central frequency

• Discretized time r, octave j, voice v:

$$\psi_{r,j}^v[n] = \frac{1}{\sqrt{2^{j+v/V}}} \psi\left(\frac{nT - r2^j b_0}{2^{j+v/V}}\right), \, b_0: \text{ sampling at scale zero}$$

• Time-scale analysis:

$$\mathbf{d} = d_{r,j}^{v} = \left\langle d[n], \psi_{r,j}^{v}[n] \right\rangle = \sum_{n} d[n] \overline{\psi_{r,j}^{v}[n]}$$

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
29/46	00000000	000000000	000000	00000	00000000	000

Figure 17: Morlet wavelet scalograms, data and templates

Take advantage from the closest similarity/dissimilarity:

• remember wiggles: on sliding windows, at each scale, a single complex coefficient compensates amplitude and phase

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
30/46						

Unary filters

• Windowed unary adaptation: complex unary filter $h(a_{opt})$ compensates delay/amplitude mismatches:

$$\mathbf{a}_{\mathrm{opt}} = \operatorname*{arg\,min}_{\{a_j\}(j\in J)} \left\| \mathbf{d} - \sum_j a_j \mathbf{r}_k \right\|^2$$

• Vector Wiener equations for complex signals:

$$\langle \mathbf{d}, \mathbf{r}_m \rangle = \sum_j a_j \langle \mathbf{r}_j, \mathbf{r}_m \rangle$$

• Time-scale synthesis:

$$\hat{d}[n] = \sum_{r} \sum_{j,v} \hat{d}_{r,j}^{v} \widetilde{\psi}_{r,j}^{v}[n]$$

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results •0000	Going proximal	Conclusions 000
31/46						

Figure 18: Wavelet scalograms, data and templates, after unary adaptation

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 0●000	Going proximal	Conclusions 000
32/46						

Results (reminders)

Figure 19: Wavelet scalograms, data and templates

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00●00	Going proximal	Conclusions 000
33/46						

Figure 20: Original data

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 000●0	Going proximal	Conclusions
34/46						

Figure 21: Filtered data, "best" template

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 0000●	Going proximal	Conclusions
35/46						

Figure 22: Filtered data, three templates

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal •0000000	Conclusions 000
36/46						

Going a little further

Impose geophysical data related assumptions: e.g. sparsity

Figure 23: Generalized Gaussian modeling of seismic data wavelet frame decomposition with different power laws.

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\boxed{\begin{array}{c} \underset{x \in \mathcal{H}}{\text{minimize}} \quad \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}}$$

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\boxed{\begin{array}{c} \underset{x \in \mathcal{H}}{\text{minimize}} \quad \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}}$$

with lower-semicontinuous proper convex functions f_j and bounded linear operators L_j .

• f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\boxed{\begin{array}{c} \underset{x \in \mathcal{H}}{\text{minimize}} \quad \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}}$$

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\begin{array}{|c|c|}\hline \underset{x \in \mathcal{H}}{\text{minimize}} & \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}$$

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_j can be related to a constraint (e.g. a support constraint),

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\begin{array}{|c|c|}\hline \underset{x \in \mathcal{H}}{\text{minimize}} & \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}$$

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_j can be related to a constraint (e.g. a support constraint),
- L_j can model a blur operator,

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\begin{array}{|c|c|}\hline \underset{x \in \mathcal{H}}{\text{minimize}} & \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}$$

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_j can be related to a constraint (e.g. a support constraint),
- L_j can model a blur operator,
- L_j can model a gradient operator (e.g. total variation),

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal ○●○○○○○○	Conclusions 000
37/46						

$$\begin{array}{|c|c|}\hline \underset{x \in \mathcal{H}}{\text{minimize}} & \sum_{j=1}^{J} f_j(\boldsymbol{L}_j x) \end{array}$$

- f_j can be related to noise (e.g. a quadratic term when the noise is Gaussian),
- f_j can be related to some a priori on the target solution (e.g. an a priori on the wavelet coefficient distribution),
- f_j can be related to a constraint (e.g. a support constraint),
- L_j can model a blur operator,
- L_j can model a gradient operator (e.g. total variation),
- L_j can model a frame operator.

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal 00●00000	Conclusions 000
38/46						

Problem re-formulation

Assumption: templates linked to $\bar{m}^{(k)}$ throughout time-varying (FIR) filters:

$$\bar{m}^{(k)} = \sum_{j=0}^{J-1} \sum_{p} \bar{h}_{j}^{(p)}(k) r_{j}^{(k-p)}$$

where

• $\bar{h}_{j}^{(k)}$: unknown impulse response of the filter corresponding to template j and time k, then:

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
39/46						

Results: synthetics (noise: $\sigma = 0.08$)

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
40/46						

Assumptions

• F is a frame, \bar{p} is a realization of a random vector P:

 $f_P(p) \propto \exp(-\varphi(Fp)),$

• $\bar{\mathbf{h}}$ is a realization of a random vector H:

 $f_H(\mathbf{h}) \propto \exp(-\rho(\mathbf{h})),$

• n is a realization of a random vector N, of probability density:

$$f_N(n) \propto \exp(-\psi(n)),$$

slow variations along time and concentration of the filters

$$|h_j^{(n+1)}(p) - h_j^{(n)}(p)| \leq \varepsilon_{j,p} ; \qquad \sum_{j=0}^{J-1} \widetilde{\rho}_j(h_j) \leq \tau$$

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal 00000●00	Conclusions 000
41/46						

Results: synthetics

Figure 24: Simulated results with heavy noise.

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal 000000●0	Conclusions
42/46						

Results: synthetics

		SNR_y		SNR _s		
$\sigma \setminus \widetilde{\rho}$	ℓ_1	ℓ_2	$\ell_{1,2}$	ℓ_1	ℓ_2	$\ell_{1,2}$
0.01	20.90	21.23	23.57	24.36	24.68	26.74
0.02	20.89	21.16	23.51	22.53	23.02	23.76
0.04	19.00	19.90	20.67	20.15	20.14	19.84
0.08	17.55	16.81	17.34	16.96	16.56	15.96

Signal-to-noise ratios (SNR, averaged over 100 noise realisations)

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	00000000	000000000	000000	00000	0000000	000
43/46						

Results: potential on real data

Figure 25: Portion of a receiver gather: recorded data.

Context	Multiple filtering	Wavelets	Discretization, unary filters	Results	Going proximal	Conclusions
000000	00000000	000000000	000000	00000	0000000	000
43/46						

Results: potential on real data

Figure 25: (a) Unary filters (b) Proximal FIR filters.

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions •00
44/46						

Conclusions

Take-away messages:

- Practical side
 - Competitive with more standard 2D processing
 - Very fast (unary part): industrial integration
- Technical side
 - Lots of choices, insights from 1D or 1.5D
 - Non-stationary, wavelet-based, adaptive multiple filtering
 - Take good care in cascaded processing
- Present work
 - Other applications: pattern matching, (voice) echo cancellation, ultrasonic/acoustic emissions with home-made templates
 - Going 2D: crucial choices on redundancy, directionality

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
45/46						

Conclusions

Now what's next: curvelets, shearlets, dual-tree complex wavelets?

Figure 26: From T. Lee (TPAMI-1996): 2D Gabor filters (odd and even) or Weyl-Heisenberg coherent states

Context 000000	Multiple filtering	Wavelets 000000000	Discretization, unary filters	Results 00000	Going proximal	Conclusions
46/46						

References

- Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012, Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geophysics, 77, V183–V192; http://arxiv.org/abs/1108.4674
- Pham, M. Q., C. Chaux, L. Duval, L. and J.-C. Pesquet, 2014, A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal: IEEE Trans. Signal Process., accepted; http://tinyurl.com/proximal-multiple

Jacques, L., L. Duval, C. Chaux, and G. Peyré, 2011, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity: Signal Process., **91**, 2699–2730; http://arxiv.org/abs/1101.5320

