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WATER-ROCK REACTIONS HYDROTHERMAL VENTS SURFACE JETS
("WHITE SMOKERS")
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e Life in extreme conditions...

* Subglacial lakes as analogues of icy moons




DRILL FOR VICTORY

After boring through almost 4 kilometres of ice, ;
researchers are on the verge of reaching Lake Vostok

Antarctic
ice sheet

Frozen

lake water }
| W 4 km

ANTARCTICA
e South Pole

Lake
Vostok

.......................

Ross Ice Shelf T ~Sediments
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* No wind, nor solar radiations...



* No wind, nor solar radiations...
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e But geothermal heating !
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* No wind, nor solar radiations...

e But geothermal heating !
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mW m

 And heterogeneous

ice sheet... =
horizontal
temperature
gradient ! A
ROCK Faeo
- 50km >

11



* No wind, nor solar radiations...

e But geothermal heating !

20 40 60 90 120 150 500
mW m

 And heterogeneous
ice sheet... =

horizontal

temperature 30

gradient ! Iy~ =10 (F/dbar)P A
— 1°C/km vertical drop ROCK Fgeo
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Science Advances 7.8 (2021): eabc3972. Journal of Fluid Mechanics 915 (2021). "



Stable diffusive state. Unstable diffusive
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Stable diffusive state. Unstable diffusive

f
<> No motion. state. Circulation.
D 4

Ice Ice

Small Heating Large Heating
Control Parameter
Rayleigh Number Unstable when Ra > Ra, =
gah*F 0(1000)

Ra

vkk Science Advances 7.8 (2021): eabc3972. Journal of Fluid Mechanics 915 (2021). "
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Instability: a,,+ > 0 + Ra large (forcing overcomes dissipation)
+ F > F,,; (compressibility effects) .



pressure p; — px (dbar)

Fc (MW/m?)
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Take home

We solved an EVP to
find . < 50 mW /m?*

for most lakes.
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We want to know...

 Turbulence
 Circulation
* Mean temperature

Va4 T=TP)

Visc
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We want to know...

Va4 T=TP)

Turbulence
Circulation
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We want to know... Reynolds number Take home
 Turbulence vh 1 v up to few mm/s
° Circulation Re — 7 ~ O-OBRaZ V Increases W|th h
* Mean temperature o Ulemns) 0
o P — 10 10 10
h Yyv o Ve Yy 0
P o ~ ~ | .
’ ; ‘ T=Tf(P) 1?((5 \.“. = \eX\trapO|atI0n 1000 1 ' B 1111
I % | S R +#:'W & )
I | g 3 M 2 2000 22235
I | (\IO < - 3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, %
: AT : h T _ 2 3000 33340
I n e
| | (a) S 3
I | % 1D 1| — 4000 L 4446
I | — 109 "—':"—_'“'{6_11 P |
‘ F Ra 5000100 7oL 702 03 5558

geo lake depth h (m)
23



Buovyancy

/ Stokes (linear) drag

Fc = 3mr3pg

b,

Gravity
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Buovyancy

/ Stokes (linear) drag

Settling/sedimentation velocity

~ 29(pw — pp)1?
_ >

w

Fc = 3mr3pg

b,

Gravity
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Buovyancy

/ Stokes (linear) drag

Settling/sedimentation velocity

~ 29(pw — pp)1?
_ >

w

Suspended if v > w — 75,44

Fc = 3mr3pg

b,

Gravity
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CECs

SPL

Ellsworth

Vostok

.......................................................................................................................

Concordia
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CECs

SPL 0.10
Ellsworth 0.69
Vostok 3.80

Concordia

) o
. 5
. D
. 5
s 5
. B -

. K
.0 *
. K

.

Take home

Microorganisms & dust aggregates
can be suspended and
encapsulated within the ice through
freezing — good news for accreted
ice analysis.
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* Horizontal temperature
gradient* ICE I 1000m

* Advanced particle
transport model

p
\ 4
. . L
Lake CECs ROCK Fgeo

*ongoing project (J. Nandaha M2 internship)
**in collaboration with CECs (Chile) and BAS (UK)



WATER-ROCK REACTIONS HYDROTHERMAL VENTS SURFACE JETS
("WHITE SMOKERS")

credit ©C. Michaut J.Geophys. Res. Planets, 119, 550-573, 2014

|.B. Sub. Hydro.: On Icy Moons
* Glebaleceans; near-surface, small-scale

water pockets lurking beneath crustal
topography.




crack stage
TR X 7TIRAAY FIRSRV ¥ ([ X77Tvr7w
— < T

=
o

<10%s

+

saucer-shaped sill and
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Icarus 286 (2017) 261-269

Fig. 3. Schemaric illustrarion of the evolution of a sawcer-shaped sill and its surface expression o creace pirs, domes or small chaos, The upward-pointing pams of the frozen

freezing and disruption
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(a) surface

Fig. 2. Schematic representation of a cryomagma reservoir of volume V and radius R, located at depth H under the surface. Liquid cryomagma is represented in white
whereas frozen cryomagma is hatched in grey. (a) The reservoir is filled with pure or briny liquid water at isostatic pressure P;. (b) An initial liquid volume V; freezes
and becomes a volume V; of ice, inducing an overpressure AP in the reservoir (see Section 2.2). (c) When the pressure reaches a critical value AP, the wall fractures
and the pressurized liquid rises to the surface through a H long fracture (see Section 2.3).

Icarus 335 (2020) 113369 Is melting truly homogeneous ? 32



Stronger melting
in the cavity
upper half.

* Heterogeneous melting drives translation and deforms the initial shape.
* How does this affect longevity and crustal stability/fracturing ?

33



* Thickness : 4 km
 Age:30 MY < Sea-levelrise : 60 m




Mass balance of the Antarctic Ice Sheet
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Mass balance of the Antarctic Ice Sheet
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Before

ice shelf ) .

- side
W drag

Grounding line

Ice shelves

RATE OF ICE THICKNESS CHANGE

-6 0 +1 meter per year

Areas that are
gaining mass

Areas that are
losing mass

Amundsen
Sea

500 MILES

NASA, Gudmundson et al. (2019), Smith et al. (2020)/NYT



S RATE OF ICE THICKNESS CHANGE

‘ ‘ AN EE =
~ -6 0 +1 meter per year

Ny
N\ vy Before

Areas that are
gaining mass

Ice shelves

Areas that are
losing mass

Amundsen
Sea

500 MILES

= Basal melting is key

NASA, Gudmundson et al. (2019), Smith et al. (2020)/NYT *



A RATE OF ICE THICKNESS CHANGE
( A 4 m

-6 0 +1 meter per year

Before

Areas that are
gaining mass

Areas that are
losing mass

Amundsen
Sea

500 MILES

What is the meter-scale
boundary layer dynamics?

NASA, Gudmundson et al. (2019), Smith et al. (2020)/NYT

= Basal melting is key



Z = h+ tQS

Z=h"
qi

Ocean current

._Uy

r> Tfreeze

Stefan Problem
Stoch = q; — qs

(q, = —0,T, z=~h",
qs = —0,T, z=h",

L Latent heat
St

\ B Cp (T — Tfreeze) Sensible heat
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Z = h+ tQS

Z=h"
qi

Ocean current

.—U>

r> Tfreeze

Stefan Problem
Stoch = q; — qs

Observation

(q, = —0,T, z=~h",
qs = —0,T, z=h",

L Latent heat
St

\ B Cp (T — Tfreeze) Sensible heat

41, qs = fluxes within a turbulent boundary layer ~ 0(1)cm

Conclusion

— parametrized in ocean models ~ 0(10)m
qs = 0, qr = C;/ZFTU(T — Tfreeze) (eq 1)

41



(q, = —0,T, z=nh",
Stefan Problem < q; =—0,T, z=h",
Sto:h = q; — qq L Latent heat
Z — h+ qu St = :
— 2 \ Cp (T — Tfreeze) Sensible heat
z=h 1 Observation
gl q;, 9 = fluxes within a turbulent boundary layer ~ 0(1)cm
Ocean current Conclusion
_U_y — parametrized in ocean models ~ 0(10)m
1/2
> Tfreeze qs =0, 41 = Cd/ FTU(T o Tfreeze) (eq 1)
Questions U, T, local slope, ...
Is (eq 1) reasonable ? Are hydraulically-smooth ice
How do the problem parameters influence C, et I;;? | surfaces morphologically stable ?
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“Scallops”

Time-averaged velocity and vorticity
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“Scallops”

\

Statistical approach: 00",
q; and h out-of-phase 0l

such that max(q;) lies Sl |
within a trough. ] -

Claudin et al. (2017)
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2 discontinuous domains

9,T, = V2T, solid

DtTl — Vle

V. ﬁl =0

D.u; = PrV?u; —Vp; — PrRiT;Z2 + 2 Pr’Re &

liquid

=T, = Tfreeze

interf
Sto,h = 0,T, — d,T, o

(a) 22 17 11 08 09 (b) cold (c),

hot

45
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2 discontinuous domains 1 diffuse 2-phase (porous) domain
solid & liquid
DtT = VZT — Stat¢

0,T; = V2T, solid

.-EDtTl_)=VZTl V‘ﬂ=0
g V=0 _ Dl = Prv2i —Vp — PrRiT% + 2 Pr2Re % — Pri—224
= Dy = Prv%i, —Vp, — PrRiT;2 + 2 Pr?Re & e = p r(e)

T; = Ty = Trreeze e d:¢p = A(e)V?¢p + g(¢p) Gouv. eq. for phase var. ¢

Std,h = ,T, — 8,T,

(a) 22 -17  -11 08 00 (b) cold (C),

hot
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2 discontinuous domains 1 diffuse 2-phase (porous) domain
solid & liquid

0, T, = V*T, solid ,
o2 DtT = VT — Stat¢
> V . ul = N 2= A 2 A (1_¢) -
g Diu = PrV4u —Vp — PrRiTZ + 2Pr“ReXx — Pr o Y

d:¢p = A(e)V?¢p + g(¢p) Gouv. eq. for phase var. ¢

=T, = Tfreeze

interf
Sto,h = 0,T, — d,T, o

(a) 22 17 11 08 00 (D) cold (C)“Z

Obj.: Effect of eurrent
and stratification

hot
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Stratification effects

Ri = 4.510° Ri = —4.510°
(Ri, = 40) Ri =0 (Ra = 4.5 10°)

4

I

stable neutral unstable

¥
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: 10 :
12 y B 12 g 2 9 2 1 2

Carving from BL-attached streamwise vortices to domain-scale Rayleigh-Benard rolls.
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Carving from BL-attached streamwise vortices to domain-scale Rayleigh-Benard rolls.
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— consider stronger currents to get to « scallops ».

— consider ice melting in saltwater (numerical and experimental work
possible).
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Mass (Gt)
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ATMOSPHERE The need for a grand parameterization.
8 V4
i — current parameterization predicts only 1%
ICE observed melt rate!
ﬂ
’ P — because buoyancy-controlled melting (not

shear)

— horizontal circulation in the “fjord” could play
an important role.

Upright OCEAN
boundary

layer with no
|

Combined sims & experiments approach with R.

Volk and S. Joubaud in preparation!
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Conclusions

gravity
|'g

boundary layer

ﬁﬂow

large-scale
circulation =—

freshwater 1“
release

subglacial
drainage

large melting

/

freezing

morphological stability
using phase field models.

lce melting and
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Subglacial
hydrodynamics
(buoyancy
driven) on Earth
and Icy Moons.
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froe 1356 10 2008

The rate that Antarctice’s iy operdhoer b v
ters flow from the land Into [ . 2 ]

the sea has been speeding up.
We need to understand why.

FROM STABLE GLACIER...

1 A stable glacier is in rough 2lheﬁuﬂngp.1ufa
equilbrkm. Annually, the
snow faling on the clader
replaces the ice flowing
info the ocean

zcts ke 5 cork or dam,
helding back the ice
upsiream

Grounding line

Sedments and weter
glacier, the ice shelf, benesth the ice affect
its spred — 2 does how
much of the glader is in
cantact with $he land st
the "grounding line’

...10 RETREATING GLACIER

The equiibrium of the stable Warm currents The thinning reduces

4gindublmtl)mhno Sm&rhlu Hts effectiveness in
longer encugh snowfall to increase, damming ice flow
replace the incressing Ice melting the

flow info the ocean. AN the
lost lce ends up In the ocesn,
rasing global sea level.

and cousing
more icebergs

floating ke shelf As more of the glacier

begs fo flcat the
glacier flows faster.

Thwaltes Glacler and Pine Island Glacler are two of the biggest and
fastest-retreating In Antarctica. If both collapsed, global sea levels could rise
by over a metre. Without them, the entire West Antarctic Ice Sheet could be
more likely to collapse, leading global sea levels to rise by over three metres.

A five-year collaboration Is Investigating what's causing ice loss at Thwaites
Glacler and how It will impact global sea levels. This Is a joint venture between
the U.S. National Sclence Foundation and the UK's Natural Environment
Research Council. The elght projects use a sulte of technologies.

+ simulations
with O(1)km
horizontal --
0(10)m
vertical
resolution

NERC's Twin Diter aircraft will take radar
messurements to look deep below fhe surface
of the ice and build & clear picture of how
different logers of ce snd fhe bedrock inferact
This is cruclel In understanding how dimete
cheange will sffect large ice sheels.

SHSMOMETERS

An array of selsmometers will
messure cond¥ions under the ke and
detect changes In movement, in the

same wayy we monitor earthquakes.

HOT WATER DRILLS

These sample the seabed
benesth floating ice shelves
and sedments beneath
grounded ice also take
kemsbanrrttﬂﬂ,
which will show us what the
clmate was like in the past.

Glacier thins

(1

Copyright: NERC, Ben Gilliland

, —\ | What is the

T P R O(1)cm

BT i boundary
layer dynamic

“'":"‘"““"Nh‘nk eoted 3;;:
277

6

sites” retreated 15kem,
At 182,000 square
km, Thwattes Glacler | N
Is one of the largest
glaciers on the planet. 5
It covers an area the e
size of Great Britain — f
or the State of [
Flocida. It Is so
remote that only &
very few human

beings have ever set
foot on 1.
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100 -

107! E

However, no phase-change origin...
Same asymmetry exists for the heat flux at a
smooth boundary.

—Not due to coupling... but an intrinsic
property of wall-bounded flows.

Upwellings (hot) have a high probability of

being intense, while downwellings (cold) are
always weak.
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— consider stronger
currents to get to
« scallops ».

Salinity C (g/kg) [DD] Temperature T (° C) [DD]

(92
1
3 G

60 s
o
o

t

o

— consider ice melting in an
ambiant at rest but stratified
in temperature and salt.

t=120s
(9]

o

— go back to 2-domain @

Il
approach. ~

10 T T T 0 T : .

0 5 10 15 _ 0 5 10 15
. Length x (cm) Length

“interested? Send me an S o |
email! louis.couston@ens- 29 ) 30
lyon.fr 0 5 10 15 20

Physical Review Fluids 6.2 (2021): 023802.



Principales étapes théoriques de l'origine
et du développement de la vie sur Terre.

Atomes :
€ H, 0O
N,P S

Présents partou
l'univers, sur p

toutes les plan

Terre primiti

Molécules
moyennes :
acides
aminés,
bases
azotées,
sucres ...

——

Macro-
molécules :
protéines,
acides
nucléiques,
glucides ...

Qu’, a
Ppo
, C, "’D > 0
LS :‘é):" "’:‘

-~
« Croitre et
multiplier » !

®)
Planet Terre

credit ©Pierre Thomas

Ressources

cellules
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On aimerait savoir...

Intensité de la turbulence Re = — ~ (0.03Ra2

Vitesses grandes échelles
Température moyenne

Ye4 =T

h

el

v

Ar

geo

Nombre de Nusselt

1 Fh 2

Nombre de Reynolds

vh
v kAT

o\

Ekman Numerical simulations: e\l\‘x’a
00—~ @ o o.0.. Pr=1 &
E ¢ 103 o.0O.. Pr=7 E
40__ ‘ 10_4 OeD... P?“=100 __
5 L p 4x 105 Laboratory experiments: |
"g m 105 @, W ... Present work <§:
Z | A 3x106 +-x Rossby(1969) e i
z >
Z

P
C il il il il

IIIII| | IIIIIII| I I N
103 104 103 106 107 108 109 1010
Rayleigh number
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credit ExXOW

B Ocean Circulation
I Geophysical Activity

B Transport to Ice Surface
B Sedimentation

~ Radiation
[l Seafloor Fluid Flow
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https://www.whoi.edu/press-room/news-release/nasa-makes-dual-investment-in-ocean-worlds-research/

INVESTIGATING THWAITES GLACIER

speed from 1356 1o 2008
nh,—-gnrh‘-l-ﬁr)

The rate that Antarctics’s

lers flow from the land Into
the sea has been speeding up.
chudhm‘nmn‘m./.

FROM STABLE GLACIER...

A stable glacier is in rough The floating pert of & Sedments and weter

equilbriam. Annually, the glacier, the ice shelf, benesth the ice affect

snow faling on the glader zcts Bke & cork or dam, its speed — &3 does how

replaces the ice flowing helding back the ice much of the glader is in

info the ocean upstream confact with #he land st
the “grounding line’

Sy

Grounding line

.10 RETREATING GLACIER

4;::!3 s dost l:u::::ul m:::::, “lb!d.f‘::r:v‘znmn
longer encugh snowfall fo increase, damming ice fow
replace the incressing Ice melting the
flow into the ocean. AN the floating ke shelf As more of the glacier
st Ice ends o In he ocesn, 2nd cousing begins o ficat the
raing globel sea level more icebergs glecier flows faster.

Thwaltes Glacler and Pine Island Glacler are two of the biggest and
fastest-retreating In Antarctica. If both collapsed, global sea levels could rise
by over a metre. Without them, the entire West Antarctic Ice Sheet could be
more lkely to collapse, leading global sea levels to rise by over three metres.

A five-year collaboration Is Investigating what's causing ice loss at Thwaites
Glacler and how It will Impact global sea levels. This Is a joint venture between
the U.S. National Sclence Foundation and the UR's Natural Environment
Research Council. The elght projects use a sulte of technologles.

NERC's Twin Diter aircraft will take radar

HOT WATER DRILLS

These sample the seabed

messurements to lock deep below fhe surface benesth floating ice shelves
of the ice and build & clear picture of how and sedments beneath

different logers of Ice and the bedrock interact grounded ice They also tske
This is cruclel In understanding how dimete joe cores from the ice shef,
change will sffact large ice sheets which will show us what the

climate was like in the past.

SHSMOMETERS

An array of selsmometers will
messure condifions under the ice and
detect changes In movement, in the

Between 139 #1d 2011 the ‘gre
':';:‘::: b ot
e de 'Nn!t
tad Thwaktes” rmmmm“'

=

At 182,000 square
km, Thwaltes Glacler
Is one of the largest
glaciers on the planet.
It covers an area the
size of Great Britain
or the State of
Florida. 1t Is s0
remote that only &
very few human

beings have ever set
foot on it.

68



* The Astrobiology Primer v2
* NASA roadmap to astrobiology

* IPCC’s special report on The Ocean and Cryosphere in a Changing
Climate



* Christopher German Exploring Ocean Worlds (ExXOW) project at WHOI

* Thwaites

70


https://oceanworlds.whoi.edu/exploring-ocean-worlds/




Motivation: Extreme Antarctic subglacial lakes (ASL)

Two-way
travel
time OR
depth

30000 -

Distance (m)
2000 3000 4000 5000 6000 7000 8000 9000

m
¢}
<
0
=
5
2

o

Echo-free

zone
Bedrock
sidewall

‘ééséészéak

Lake reflector
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State-of-the-art: Heating or Rayleigh-Bénard convection

What we want to know

 Thermal structure

* Turbulence intensity

* Speed of overturning _Ekman __Numerical simulations:
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Result #1: Are ASL stable, or unstable?

RB instability for a simple fluid:
(overcome viscous/thermal dissipation)

4

ah*F
Ra=22""5 0(1000)
VKK

But...
 The equation of state for
water is nonlinear
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Result #1: Are ASL stable, or unstable?

RB instability for a simple fluid:

(overcome viscous/thermal dissipation)

ah*F
Ra=22""5 0(1000)
VKK

But...
 The equation of state for
water is nonlinear

D ap,: > 0 (thinice)

;P; § T=TdP)
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Result #1: Are ASL stable, or unstable?

RB instability for a simple fluid:
(overcome viscous/thermal dissipation)

ah*F
Ra =227 5 0(1000)
vk

But... .

 The equation of state for \
water is nonlinear \

e ASL can be 1km deep and \
experience compressibility \

D ap,: > 0 (thinice) \
@F >F,; (thickice)

;P; § T=TiP)
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Result #1: Are ASL stable, or unstable?

RB instability for a simple fluid:
(overcome viscous/thermal dissipation)

ah*F
Ra =227 5 0(1000)
vk

But...

 The equation of state for
water is nonlinear

e ASL can be 1km deep and
experience compressibility

D ap,: > 0 (thinice)
@F >F,; (thickice)
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Implications for future lake exploration

¢ Go for large water depth

s* Upwelling is where there is melting
** Don’t use accreted ice if you're sampling
a lake with a thin ice cover

Remember the nonlinear equation of state...
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What’s next...

sample here
Lake CECs /N . WARM
7.7m with
159 m I o I stable density??
300 m

10 km 79



What’s next...




What’s next...

= Ice drop = Water

depth (m)

thickness
(m)

length
(km)

CEGCs 2653 7.7 0.69

(m) Thuik (K) £ (m) U (mm/s)

SPL 2857 . 1( : 4.7 042
Ellsworth 3400 300 1( 156 0.077 0.0069
Vostok 3945 600 0.066 0.0059 3.8( 0.066

Concordia 4055 168 AE 0.063 0.0056 1.0 0.8: 3 0.044

Take home

* Definitely worth considering variable freezing point for tilted roofs.

 However, the horizontal flow is likely weaker than the heat-flux
induced vertical circulation.
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