Subglacial Hydrodynamics & Ice-Water Interactions

Louis-Alexandre Couston

Laboratoire de Physique Univ Lyon 1 & ENS de Lyon Iouis.couston@ens-lyon.fr

credit ©Pete Bucktrout

MAAAS

Europear

Fluid Mechanics Research PhD @ UC Berkeley (Californie) Postdoc @ IRPHE (Marseille) & British Antarctic Survey (Cambridge) MC @ Lyon 1 & ENS

Wave Resonance

Fluid Mechanics Research PhD @ UC Berkeley (Californie) Postdoc @ IRPHE (Marseille) & British Antarctic Survey (Cambridge) MC @ Lyon 1 & ENS

Wave Resonance

Turbulence & HPC

Fluid Mechanics Research PhD @ UC Berkeley (Californie) Postdoc @ IRPHE (Marseille) & British Antarctic Survey (Cambridge) MC @ Lyon 1 & ENS

The National Academics of SCIENCES - ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

AN ASTROBIOLOGY STRATEGY FOR THE Search for Life in the Universe

I. Astrobiology Subglacial hydrodynamics

- A. On Earth
- B. On Icy Moons

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

The Ocean and Cryosphere in a Changing Climate

This Summary for Policymakers was formally approved at the Second Joint Session of Working Groups I and II of the IPCC and accepted by the 51th Session of the IPCC, Principality of Monaco, 24th September 2019

Summary for Policymakers

I. Astrobiology Subglacial hydrodynamics

A. On Earth

AN ASTROBIOLOGY STRATEGY FOR THE

Search for

B. On Icy Moons

Life in the Universe

II. Climate change Ice melting in polar oceans

- A. Antarctica
- B. Greenland

I.A. Sub. Hydro.: On Earth...

- Life in extreme conditions...
- Subglacial lakes as analogues of icy moons

I.A. Sub. Hydro.: On Earth. Subglacial lakes are within reach.

DRILL FOR VICTORY After boring through almost 4 kilometres of ice, researchers are on the verge of reaching Lake Vostok. Antarctic ice sheet Drill Frozen lake water 4 km ANTARCTICA Lake Vostok South Pole Vostok Ross Ice Shelf Sediments 1,000 km 0

• No wind, nor solar radiations...

• No wind, nor solar radiations...

• But geothermal heating !

mW m⁻²

• No wind, nor solar radiations...

- But geothermal heating !

And heterogeneous
ice sheet... ⇒
horizontal
temperature
gradient !

• No wind, nor solar radiations...

• But geothermal heating !

 And heterogeneous ice sheet... ⇒ horizontal temperature gradient !

Science Advances 7.8 (2021): eabc3972. Journal of Fluid Mechanics 915 (2021).

Stable diffusive state. No motion.

Ice

Unstable diffusive state. Circulation.

Science Advances 7.8 (2021): eabc3972. Journal of Fluid Mechanics 915 (2021).

Control Parameter Rayleigh Number

Ra =

 $g\alpha h^4 F$

Stable diffusive state. No motion. Unstable diffusive state. Circulation.

15

Unstable when $Ra > Ra_C = O(1000)$

Science Advances 7.8 (2021): eabc3972. Journal of Fluid Mechanics 915 (2021).

Instability: $\alpha_{bot} > 0 + Ra$ large (forcing overcomes dissipation) + $F > F_{ad}$ (compressibility effects)

I.A. Sub. Hydro.: On Earth. Critical geothermal heat flux.

Take home

We solved an EVP to find $F_c \leq 50 \ mW/m^2$ for most lakes.

We want to know...

- Turbulence
- Circulation
- Mean temperature

<u>We want to know...</u> Reynolds number

- Turbulence
- Circulation
- Mean temperature

 $Re = \frac{vh}{m} \approx 0.03Ra^{\frac{1}{2}}$

- Horizontal temperature gradient*
- Advanced particle transport model
- Lake CECs**

*ongoing project (J. Nandaha M2 internship) **in collaboration with CECs (Chile) and BAS (UK)

credit ©C. Michaut J.Geophys. Res. Planets, 119, 550–573, 2014

I.B. Sub. Hydro.: On Icy Moons

 Global oceans; near-surface, small-scale water pockets lurking beneath crustal topography.

I.B. Sub. Hydro.: On Icy Moons. Crustal dynamics following intrusion.

Fig. 3. Schematic illustration of the evolution of a saucer-shaped sill and its surface expression to create pits, domes or small chaos. The upward-pointing parts of the frozen ³¹ sill represent intrusions produced by freezing and lead to surface disruption, or extrusion to make spots. Not to scale.

I.B. Sub. Hydro.: On Icy Moons. Longevity and cryovolcanism.

Fig. 2. Schematic representation of a cryomagma reservoir of volume V and radius R, located at depth H under the surface. Liquid cryomagma is represented in white whereas frozen cryomagma is hatched in grey. (a) The reservoir is filled with pure or briny liquid water at isostatic pressure P_0 . (b) An initial liquid volume V_t freezes and becomes a volume V_f of ice, inducing an overpressure ΔP in the reservoir (see Section 2.2). (c) When the pressure reaches a critical value ΔP_c , the wall fractures and the pressurized liquid rises to the surface through a H long fracture (see Section 2.3).

Is melting truly homogeneous ?

Icarus 335 (2020) 113369

I.B. Sub. Hydro.: On Icy Moons. Preliminary results (C. De La Salle M2 internship).

- Heterogeneous melting drives translation and deforms the initial shape.
- How does this affect longevity and crustal stability/fracturing ?

II.A. Ice melting: Antarctica

- 1.5 x USA Thickness : 4 km
- Age : 30 MY Sea-level rise : 60 m

II.A. Ice melting: Antarctica.

Mass balance of the Antarctic Ice Sheet 1000 -2 0 0 Sea level contribution (mm) 2 Mass change (Gt) -1000 4 -2000 6 8 -3000 Antarctica West Antarctica 10 **East Antarctica** -4000 Antarctic Peninsula 12 -5000 🖵 1990 1995 2000 2020 2005 2010 2015 Year

II.A. Ice melting: Antarctica.

Mass balance of the Antarctic Ice Sheet 1000 -2 0 0 a level contribution (mm) 2 Mass change (Gt) -1000 4 -2000 6 -3000 Antarctica West Antarctica **East Antarctica** -4000 Antarctic Peninsula 12 255imistic? -5000 <u>-</u> 1990 2015 2020 1995 2005 2000 2010 Year 36
II.A. Ice melting: Antarctica. Observations; large-scale mechanism.

NASA, Gudmundson et al. (2019), Smith et al. (2020)/NYT 37

II.A. Ice melting: Antarctica. Observations; large-scale mechanism.

NASA, Gudmundson et al. (2019), Smith et al. (2020)/NYT ³⁸

II.A. Ice melting: Antarctica. Observations; large-scale mechanism.

II.A. Ice melting: Antarctica. Boundary layer thermodynamics.

$$\frac{\text{Stefan Problem}}{\text{St}\partial_t h} = q_l - q_s$$

$$\begin{cases} q_{l} = -\partial_{z}T, & z = h^{-}, \\ q_{s} = -\partial_{z}T, & z = h^{+}, \\ St = \frac{L}{c_{p}(T - T_{freeze})} & \text{Latent heat} \\ \end{cases}$$

II.A. Ice melting: Antarctica. Boundary layer thermodynamics.

 $\frac{\text{Stefan Problem}}{\text{St}\partial_t h = q_l - q_s} \begin{cases} q_l = -\partial_z T, & z = h^-, \\ q_s = -\partial_z T, & z = h^+, \\ St = \frac{L}{c_p \left(T - T_{freeze}\right)} & \text{Latent heat} \end{cases}$ $\frac{\text{Observation}}{q_l, q_s \equiv \text{fluxes within a turbulent boundary layer} \sim O(1)cm$

<u>Conclusion</u>

 \rightarrow parametrized in ocean models $\sim O(10)m$

$$q_s = 0, \qquad q_l = C_d^{1/2} \Gamma_T U \left(T - T_{freeze} \right) \qquad (eq 1)$$

II.A. Ice melting: Antarctica. Boundary layer thermodynamics.

<u>Stefan Problem</u>	$\begin{cases} q_l = -\partial_z T, & z = \\ q_s = -\partial_z T, & z = \end{cases}$	h ⁻ , h ⁺ ,
$\overline{St\partial_t h} = q_l - q_s$	$\begin{cases} 13 & 2 \\ 1 & L \end{cases}$	Latent heat
	$\int St = \frac{T}{c_p (T - T_{freez})}$	(e) Sensible heat
$\frac{\text{Observation}}{q_l, q_s} \equiv \text{fluxes within}$	a turbulent boundary la	ayer ~ $O(1)cm$
<u>Conclusion</u> → parametrized in or	cean models $\sim O(10)m$	
$q_s = 0, \qquad q_l = 0$	$C_d^{1/2} \Gamma_T U (T - T_{freeze})$	(eq 1)

Questions

Is (eq 1) reasonable ?

How do the problem parameters influence C_d et Γ_T ?

U,*T*, local slope, ... Are hydraulically-smooth ice surfaces morphologically stable ?

II.A. Ice melting: Antarctica. Smooth to rough ice surfaces.

"Scallops"

 $\begin{array}{c} -10 \\ -15 \\ -20 \\ -25 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array}$

5

Bushuk et al. (2019)

Melting $\leftarrow \times 2$

Time-averaged velocity and vorticity

60

150

100

50

0

-50

-100

-150

II.A. Ice melting: Antarctica. Smooth to rough ice surfaces.

"Scallops"

<u>Statistical approach:</u> q_l and h out-of-phase such that max (q_l) lies within a trough.

Claudin et al. (2017)

Melting $\leftarrow \times 2$

Time-averaged velocity and vorticity

2 discontinuous domains

 $\begin{array}{l} \displaystyle \underset{l}{\text{pipe}} & \partial_t T_s = \nabla^2 T_s & \text{solid} \\ \\ \displaystyle \underset{l}{\text{pipe}} & D_t T_l = \nabla^2 T_l \\ \nabla \cdot \vec{u}_l = 0 \\ D_t \vec{u}_l = Pr \nabla^2 \vec{u}_l - \nabla p_l - Pr Ri T_l \hat{z} + 2 Pr^2 Re \, \hat{x} \\ \\ \displaystyle \underset{l}{\text{T}_l = T_s = T_{freeze} \\ St \partial_t h = \partial_z T_s - \partial_z T_l} \end{array}$

45

2 discontinuous domains

1 diffuse 2-phase (porous) domain

 $\begin{array}{l} \begin{array}{l} \partial_{t}T_{s}=\nabla^{2}T_{s} \\ \partial_{t}T_{l}=\nabla^{2}T_{l} \\ \nabla\cdot\vec{u}_{l}=0 \\ D_{t}\vec{u}_{l}=Pr\nabla^{2}\vec{u}_{l}-\nabla p_{l}-PrRiT_{l}\hat{z}+2Pr^{2}Re\,\hat{x} \end{array} \\ \end{array}$ $\begin{array}{l} T_{l}=T_{s}=T_{freeze} \\ St\partial_{t}h=\partial_{z}T_{s}-\partial_{z}T_{l} \end{array} \qquad \text{interface} \end{array}$

solid & liquid $D_{t}T = \nabla^{2}T - St\partial_{t}\phi$ $\nabla \cdot \vec{u} = 0$ $D_{t}\vec{u} = Pr\nabla^{2}\vec{u} - \nabla p - PrRiT\hat{z} + 2Pr^{2}Re\,\hat{x} - Pr\frac{(1-\phi)}{\Gamma(\epsilon)}\vec{u}$ $\partial_{t}\phi = A(\epsilon)\nabla^{2}\phi + g(\phi)$ Gov. eq. for phase var. ϕ

46

2 discontinuous domains

1 diffuse 2-phase (porous) domain

 $\begin{array}{l} \begin{array}{l} \partial_{t}T_{s}=\nabla^{2}T_{s} \\ D_{t}T_{l}=\nabla^{2}T_{l} \\ \nabla\cdot\vec{u}_{l}=0 \\ D_{t}\vec{u}_{l}=Pr\nabla^{2}\vec{u}_{l}-\nabla p_{l}-PrRiT_{l}\hat{z}+2Pr^{2}Re\,\hat{x} \end{array} \\ \end{array}$ $\begin{array}{l} T_{l}=T_{s}=T_{freeze} \\ St\partial_{t}h=\partial_{z}T_{s}-\partial_{z}T_{l} \end{array} \qquad \text{interface} \end{array}$

solid & liquid $D_{t}T = \nabla^{2}T - St\partial_{t}\phi$ $\nabla \cdot \vec{u} = 0$ $D_{t}\vec{u} = Pr\nabla^{2}\vec{u} - \nabla p - PrRiT\hat{z} + 2Pr^{2}Re\,\hat{x} - Pr\frac{(1-\phi)}{\Gamma(\epsilon)}\vec{u}$ $\partial_{t}\phi = A(\epsilon)\nabla^{2}\phi + g(\phi)$ Gov. eq. for phase var. ϕ

II.A. Ice melting: Antarctica. First results: streamwise channels and keels.

Carving from BL-attached streamwise vortices to domain-scale Rayleigh-Benard rolls.

II.A. Ice melting: Antarctica. First results: streamwise channels and keels.

Carving from BL-attached streamwise vortices to domain-scale Rayleigh-Benard rolls.

II.A. Ice melting: Antarctica. First results: no clear effect on C_d .

 \rightarrow consider <u>stronger currents</u> to *get* to « scallops ».

 \rightarrow consider ice melting in <u>saltwater</u> (numerical and experimental work possible).

Holocene (10k)

Last Ice Age (50k)

Eemian (100k)

II.B. Ice melting: Greenland

- 0.2 x USA Thickness : 1,5 km
- Age : 3 MY Sea-level rise : 6 m

200

II.B. Ice melting: Greenland.

II.B. Ice melting: Greenland. New set-up, similar questions.

The need for a grand parameterization.

- \rightarrow current parameterization predicts only 1% observed melt rate!
- \rightarrow because buoyancy-controlled melting (not shear)
- \rightarrow horizontal circulation in the "fjord" could play an important role.

Combined sims & experiments approach with R. Volk and S. Joubaud in preparation!

Conclusions

APPENDICES

I.B. Sub. Hydro.: On Icy Moons. Expected dynamics is heterogeneous.

II.A. Ice melting: Antarctica. Observation of Thwaites glacier and cavity.

+ simulations with O(1)kmhorizontal --O(10)mvertical resolution

What is the O(1)cm boundary layer dynamic ???

However, no phase-change origin... Same asymmetry exists for the heat flux at a smooth boundary.

→Not due to coupling... but an intrinsic property of wall-bounded flows.

Upwellings (hot) have a high probability of being intense, while downwellings (cold) are always weak.

→ consider stronger
currents to get to
« scallops ».

 \rightarrow consider ice melting in an ambiant at rest but <u>stratified</u> in temperature and <u>salt</u>.

 \rightarrow go back to 2-domain approach.

*interested? Send me an email! louis.couston@enslyon.fr

Physical Review Fluids 6.2 (2021): 023802.

II.A. Astrobiologie: Sur Terre.

II.A. Astrobiologie: Sur Terre. Propriétés de la circulation due au flux géothermique.

On aimerait savoir...

- Intensité de la turbulence $Re = \approx 0.03Ra^{\overline{2}}$
- Vitesses grandes échelles
- Température moyenne

INVESTIGATING THWAITES GLACIER

- The Astrobiology Primer v2
- NASA roadmap to astrobiology
- IPCC's special report on The Ocean and Cryosphere in a Changing Climate

- Christopher German Exploring Ocean Worlds (ExOW) project at WHOI
- Thwaites

Motivation: Extreme Antarctic subglacial lakes (ASL)

Seismic sounding 50s Radar Vehicles, then planes 60s First detection

1970 unusually flat & bright subglacial radio-echo surface
State-of-the-art: Heating or Rayleigh-Bénard convection

What we want to know

- Thermal structure
- Turbulence intensity
- Speed of overturning

Nusselt number $Nu = \frac{Fh}{k\Delta T} \approx 0.2Ra^{\frac{2}{7}}$

RB instability for a simple fluid: (overcome viscous/thermal dissipation)

$$Ra = \frac{g\alpha h^4 F}{\nu \kappa k} > 0(1000)$$

But...

• The equation of state for water is nonlinear

RB instability for a simple fluid: (overcome viscous/thermal dissipation)

$$Ra = \frac{g\alpha h^4 F}{\nu \kappa k} > 0(1000)$$

But...

• The equation of state for water is nonlinear

 $\oplus \alpha_{bot} > 0$ (thin ice)

75

RB instability for a simple fluid: (overcome viscous/thermal dissipation)

$$Ra = \frac{g\alpha h^4 F}{\nu \kappa k} > 0(1000)$$

But...

- The equation of state for water is nonlinear
- ASL can be 1km deep and experience compressibility
 - $\bigoplus \alpha_{bot} > 0$ (thin ice) $\bigoplus F > F_{ad}$ (thick ice)

Hydrostatic pressure P

RB instability for a simple fluid: (overcome viscous/thermal dissipation)

$$Ra = \frac{g\alpha h^4 F}{\nu \kappa k} > 0(1000)$$

But...

- The equation of state for water is nonlinear
- ASL can be 1km deep and experience compressibility
 - $\bigoplus \alpha_{bot} > 0$ (thin ice) $\bigoplus F > F_{ad}$ (thick ice)

<u>Recipe</u>

- Compressible rotating Boussinesq equations
 Linear perturbations around the base hydrostatic/diffusive state
 Growth rate σ from the eigenvalue problem
- We search for F_c such that $\sigma > 0$ for a bunch of ice pressures and water depths.
- We use the open-source pseudo-spectral code Dedalus with the eigentools package.

Implications for future lake exploration

Go for large water depth

- Upwelling is where there is melting
- Don't use accreted ice if you're sampling a lake with a thin ice cover

Remember the nonlinear equation of state...

Lake CECs will be explored in 2023! → sample at least over 10 m (300 m deep)

Thickness of the stable layer

What's next...

What's next...

	lce thickness (m)	lce drop (m)	Lake length (km)	Water depth (m)	δ (m)	T _{bulk} (K)	ℓ (m)	U (mm/s)	(mm/s)	V _{hc} (mm/s)	2r _{max} (μm)
CECs	2653	159	10.35	300	7.7	0.69	1.6	0.97	0.32	0.041	22
SPL	2857	30	10	32	4.7	0.42	0.8	0.10	0.04	0.010	7.8
Ellsworth	3400	300	10	156	0.077	0.0069	1.2	0.69	0.26	0.066	20
Vostok	3945	600	280	1067	0.066	0.0059	2.3	3.80	0.85	0.066	36
Concordia	4055	168	45	126	0.063	0.0056	1.0	0.83	0.31	0.044	22

<u>Take home</u>

- Definitely worth considering variable freezing point for tilted roofs.
- However, the horizontal flow is likely weaker than the heat-flux induced vertical circulation.

- A. Wright, M. Siegert, A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24, 659–664 (2012).
- C. S. Cockell, E. Bagshaw, M. Balme, P. Doran, C. P. Mckay, K. Miljkovic, D. Pearce, M. J. Siegert, M. Tranter, M. Voytek, J. Wadham, Subglacial environments and the search for life beyond the Earth. Antarct. Subglacial Aquat. Environ. 192, 129–148 (2011).
- G. Royston-Bishop, J. C. Priscu, M. Tranter, B. Christner, M. J. Siegert, V. Lee, Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica. Ann. Glaciol. 40,145– 150 (2005).
- T. J. McDougall, P. M. Barker, *Getting started with TEOS-10 and the Gibbs Seawater (GSW)* (Oceanographic Toolbox, 2011), p. 28.
- K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, B. P. Brown, Dedalus: A flexible framework for numerical simulations with spectral methods. *Phys. Rev. Res.* 2, 23068 (2020).
- G. Ahlers, S. Grossmann, D. Lohse, Heat transfer and large-scale dynamics in turbulent Rayleigh-Benard convection. *Rev. Mod. Phys.* **81**, 503–537 (2009).
- C. A. Vreugdenhil, B. Gayen, R. W. Griffiths, Transport by deep convection in basin-scale geostrophic circulation: Turbulence-resolving simulations. J. Fluid Mech. 865, 681–719 (2019).

