On the stochastic modeling of turbulence
the Lagrangian perspective
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Wind tunnel at Modane

See Gagne et al., Bourgoin et al.
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Two-point statistical structure of turbulence

Define the energy spectrum (Fourier transform of the correlation) as
E(k) = / e 2R () u(x + £)) de
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Two-point statistical structure of turbulence

In an equivalent way, define the velocity increment as
dpu(r) = u(z + £) — u(z),
and remark that ((§,u)?) = 202 — 2(u(z)u(x + £)).

Velomty Increments Varlance
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The Navier-Stokes equations

In three-dimensional space, consider the velocity field w(x, t), where v = (u1, us, usz),
x € R3 and say t > 0. Given a (large-scale, divergence-free forcing) £, it is solution of

ou

— 4+ (u-V)u =

ot

1
——Vp+vAu+ fand V-u =0,
P

where p is the pressure field, and v the kinematic viscosity.

!

Kolmogorov 1903-1987

"l became interested in turbulent liquid and
gas flows at the end of the thirties. From
the very beginning it was clear that the
theory of random functions of many
variables (random fields), whose
development only started at that time,
must be the underlying mathematical
technique. Moreover, | soon understood
that there was little hope of developing a
pure, closed theory, and because of the
absence of such a theory the investigation
must be based on hypotheses obtained by
processing experimental data."



3D Fluid Turbulence: Full velocity gradients

1 , Intense Rotation and Dissipation in
7 Turbulent Flows
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(picture by Toschi)
See also Luthi et al., Xu-Bodenshatz et al., etc.



The Lagrangian picture
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Yeung (97), Mordant et al. (02), Mordant et al. (04), Bourgoin-Volk

Flow equations v(t) = pn



The Lagrangian picture: Multiscale Analysis

Numerical data from the Hopkins Database: R, = 418

Power Spectrum So = ([v(t+ 1) — v(®)]*)
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The Lagrangian picture: Multiscale Analysis

Numerical data from the Hopkins Database: R\ = 418

The velocity increment: §-v(t) = v(t + 7) — v(t)
We have seen that ((§-v)?) 7 in the inertial range
We have seen that ((§-v)?) ~ 72(a?) in the range

What about high-order statistics? such as Probability density functions (PDF) and
Flatness?
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Asymptotics of phenomenology of fluid turbulence (1)

Consider (as observed) a homogeneous, isotropic stationary solution of the (forced over
L) Navier and Stokes equations: call it u, (x, t), with z € R3.

Velocity variance o2 is finite and independent on viscosity v, i.e.

Eulerian Lagrangian

7\

lim E(Ju,|?) = lim E(|v,|?) = 02 < +0
v—0 vr—0

Consider the time evolution of the velocity field v, (¢) along a trajectory
(Lagrangian description).
To ensure a bounded velocity variance, the flow will develop small scales:

lim E [|v, — v, ()]
Lim, v (t+7) (t)”TioT’

corresponding to H = 1/2 Holder continuity.

Similarly, consider the time evolution of the velocity field u, (x¢, t) at a fixed
position xg.

lim E [Ju, (z0,t 4+ 7) — Uy (z0,1)[?] o 72/3,
vr—0 7—0

corresponding to H = 1/3 Holder continuity.



Asymptotics of phenomenology of fluid turbulence (1)

Consider (as observed) a homogeneous, isotropic stationary solution of the (forced over
L) Navier and Stokes equations: call it u, (x, t), with z € R3.

Velocity variance o2 is finite and independent on viscosity v, i.e.

lim E(Ju,|?) = 02 < 400

r—0

Consider the time evolution of the velocity field v, (¢) along a trajectory
(Lagrangian description).

Similarly, consider the time evolution of the velocity field u, (x¢, t) at a fixed
position xg.

Meaning of these constraints in a (Gaussian) stochastic framework?

The picture is clear in a Lagrangian fashion, since we know well the meaning of
the "noise” dW entering in the dynamics of the Ornstein-Uhlenbeck process.

Can we give a meaning to the "noise” dW, ;3 entering in the dynamics of a
fractional Ornstein-Uhlenbeck process?, i.e.

1 ” )
duq /3(t) = —Tu1/3(t)dt + "dWy 3



Contributions on the stochastic modeling of Lagrangian turbulence

Can we build up an
infinitely differentiable and causal random

Velocity u(t)

Acceleration — Z—? process to mimic fluctuations of
NWWWMMW Lagrangian velocity at a finite Reynolds
number?
. — B. Viggiano, J. Friedrich, R. Volk, M.
pertes of fecclemation =g Bourgoin, RB Cal, L. Chevillard (2019).

time ¢

What are the minimal ingredients to
include in a spatio-temporal random

advecting Eulerian field such that induced
Lagrangian velocities are realistic of
experimental observations?
— J. Reneuve, L. Chevillard (2020).




Ornstein-Uhlenbeck processes

Consider the following linear stochastic differential equation
1
dvy (t) = —?Ul (t)dt + ﬂW(dt) = a1(t),

where T is meant to be the large (~ integral) timescale
— velocity profile v1 (¢t) not differentiable, but proper asymptotic regularity

— acceleration a1 (t) is a random distribution

— ask for includina finite Revnolds number effects
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(two-layered) Ornstein-Uhlenbeck processes

— (Sawford 91)

Consider the following linear stochastic differential equation

dvo 1

— = —?vg(t) + f1(t) = a2(t)

a1 (1) = —— fr (B)dt + /aW (dt)
Tn

where 7, is meant to be the small (~ dissipative) timescale

— velocity profile vy (t) differentiable, but proper asymptotic regularity

— acceleration ax(t) is a classical random function (finite variance), but not
differentiable



Acceleration correlation function in DNS

— (see Lamorgese, Pope, Yeung, Sawford 2007)
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FIGURE 8. Acceleration autocorrelations from CCG simulations based on (5.2)-(5.3) (solid),
Sawford 1991 (dashed), Sawford 1991 with ay from Sawford er al. (2003) (dot-dashed) and
Reynolds 2003 (dotted) models compared to component-averaged data at R; = 650 from

2048° DNS (symbols).



Making velocity infinitely differentiable

— B. Viggiano, J. Friedrich, R. Volk, M. Bourgoin, RB Cal, L. Chevillard (2019).
— S0, in a Gaussian framework, it is tempting to consider the following system of
embedded sdes, for n — oo,

dvn, 1

% = —=on(t) + fa1(t) = an(t)
dfn—l o _i

i = O faa(®)

dfz _ 1

ﬁ — ™ f2(t) ‘|‘fl(t)

df1 = —ifl (t)dt + /q(n)W(dt) .
n



Making velocity infinitely differentiable (properly)

— B. Viggiano, J. Friedrich, R. Volk, M. Bourgoin, RB Cal, L. Chevillard (2019).
— S0, in a Gaussian framework, it is tempting to consider the following system of
embedded sdes, for n — oo,

dvun, 1

W = —?’Un(t) + fn—l(t) = an(t)
Unot VL (0 + faa(®)
dt Tn
42 vVn- 1f2(75) + f1(t)
dt Tn
dfy = = fu (0t 4 an W (de)
n

with

n—1 n 20‘26_T73/T2
oy = .
" T2 Terfc (m,/T)



Making velocity infinitely differentiable (properly)

such that

2 —7'2/T2 n—1
20%e K 29mTwT T2 1
Co,, (T) = Terfo( e TR o dw,
™/T) Jr 14+ 4n2T?w T W
n—1
2 2
2026_777/T . T2 2 2 2
Co(T)= lim C,. (7) = /62””‘” e ATV duw.
o(7) = lim Cor, () Terfc (7, /T) Jr 1+ 472T2w?

then C, (7) and C, (1) can be explicitly derived (simple).



Go on (and never stop): Including Intermittency

— (generalization of the multifractal random walk of Bacry, Delour, Muzy 2001)

e L)+ e OB 1 0) = an(t)
dfgt_l — _ \/mfn_l(t) + fn—Z(t)
Tn
%2 B _mfz(t) + f1(¢)
Tn
dfy = — mfl (t)dt + \/BaW (dt) ,

Tn

with

T T e~ PP/ 4T r2Cx (W) gp

n—1 2 2
n—1 0“4 /47T7'n
Tfooo e~

Xn,e IS a nth-layered regularized (¢ > 0) fractional Ornstein-Uhlenbeck process
of vanishing Hurst exponent

and its exponential converges towards a multifractal measure (Kahane 87)

then C, (7) and C, (7) can be explicitly derived.



Numerical simulations of the obtained random process
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Comparisons to DNS data

o 1 2 3 4 s 5 4 2 o
T/TK log(7/T)

Origin  Resolution R TK T number of trajectories dt Duration
Turbase 5123 185 0.0470 0.7736 126720 4107% 17.063 7%
JHTDB  1024% 418 0.0424 1.3003 32768 2107% 76927y

TABLE 1. Summary of relevant physical parameters of the two sets of DNS data. Resolution of
the Eulerian fields, Taylor based Reynolds number Ry and Kolmogorov dissipative timesecale 7x
(Eq. 4.2) are provided in relevant publications (see text). The Lagrangian integral timescale T'p,
is defined in Eq. 4.1 and is computed from on our statistical estimation of the velocity correlation
function.




The Era of Random Fields

— From stochastic processes to random fields
— From Causality to statistical Homogeneity and/or Isotropy
— From Lagrangian velocity v(t) to a spatio-temporal Eulerian vector field u(x, t)

— Start with the Gaussian view of things, and a spatio-temporal white noise W (d%z, dt).




The Era of Random Fields

— From stochastic processes to random fields
— From Causality to statistical Homogeneity and/or Isotropy
— From Lagrangian velocity v(t) to a spatio-temporal Eulerian vector field u(x, t)

— Start with the Gaussian view of things, and a spatio-temporal white noise W (d%z, dt).

— Keep in mind that we will eventually be interested in the flow equations

v(t) = %ﬁt) — u(X(£), )

considering incompressible (divergence-free) advecting Eulerian fields V - u(x,t) = 0.
— For this reason, consider d = 2 spatial dimension.



The Era of Random Fields

— Consider then an incompressible, statistically homogeneous, isotropic and stationary
velocity field with proper regularity H in both space and time,

U(CU, t) — / glq(m —yY,t— S)W(d2y7 dS)
yERQ,SER

xt H—3/2
gH(wa t) — go(m, t)—“w? t”

kd
A functional form inspired by the Biot-Savart law.
|z, t||? = |x|? + 02t? a spatio-temporal norm.
@ a spatio-temporal cut-off function over large (integral) L and T scales.
H the Holderian regularity, H ~ 1/3 for turbulence.

Keep in mind that this has to be regularized over a small scale e to ensure
differentiability.

then do funky movies.

See also alternative (Markovian) propositions by
Chavez-Gawedzki-Horvai-Kupiainen-Vergassola (2003).



Solving the flow equations

Evolving-in-time Frozen-in-time




and measure the regularity of Lagrangian velocity

Evolving-in-time Frozen-in-time
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Conclusions

Whereas the stochastic modeling of Lagrangian velocity can be done with great
success (B. Viggiano et al. arXiv:1909.09489 (2019))

It remains to understand why and how é—EuIerian regularity makes a
1 . .
5-Lagrangian regularity.

Note also intermittent corrections on v while « is Gaussian.
See J. Reneuve et al. arXiv:2004.02864 (2020)
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Intermittency in Eulerian fluctuations

Eulerian longitudinal velocity increments: §yu(x) = u(xz + £) — u(x)

Flatness F = -A0cw)?)
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