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Topological Mechanics

Un stage et une thèse combinant expérience et théorie/numérique sont ouverts dans notre groupe
Soft and Active Matter de l’ENS de Lyon. L’objet principal de ce travail sera d’étudier la mécaniques
de (méta)matériaux dits topologiques [1-3]. Nous étendrons les concepts développés ces dix dernières
années pour décrire les propriétés topologiques de systèmes quantiques afin de comprendre et conce-
voir des structures macroscopiques dont les propriétés mécaniques sont insensibles à des variations
de leur composition ou de leur forme. Ce stage sera co-encadré par David Carpentier et
Denis Bartolo.

La Figure 1 présente deux exemples de réalisation de métamatériaux au propriétés mécaniques non
triviales : un ensemble de liens rigides au seuil d’isostaticité et une origami simple. Dans les deux cas
ces structures sont infiniment rigides sauf sur des liens localisés ou des déformations sont induites à
un coût énergétique nul. Ces modes de déformations ”mous” sont génétiquement localisés aux bords
de ces structures et sont l’analogue des modes de bords observés dans des isolant électroniques dits
topologiques, isolants en volume et conducteurs très robustes à leur surface, une conséquence directe de
la topologie non triviale de son ensemble des bandes de valence. Nous nous intéresserons aux stratégies
de design permettant de construire des structures aux modes de déformations topologiquement protégés
et iront au delà de l’analogie avec les systèmes quantiques pour sonder les propriétés de transport
paradoxalement plus riches dans ces systèmes classiques.
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FIG. 2. Mechanical modes localized at defects. a, Visualization in a deformed kagome lattice of a numerically-obtained low-energy
soft mode (red arrows, showing direction and relative amplitude of allowed displacements) and an approximate state of self-stress
(thickened bonds, showing bond forces in magenta (+) and blue (-) that cancel each other) associated with a pair of dislocations with
equal and opposite dipole moments dL and dR. The dislocations are in the interior of a lattice with periodic boundary conditions that
is perfectly isostatic. Only a small region of the lattice is shown. Each dislocation consists of a five-coordinated plaquette (enclosed
by green triangles) adjacent to a seven-coordinated plaquette (enclosed by green and orange triangles). b, Section of a deformed
square lattice of a numerically-obtained low-energy soft mode and a state of self-stress associated with a pair of dislocations with
equal and opposite dipole moments dL and dR. The visualization method is similar to that in a. The dislocations are in the interior
of a lattice with periodic boundary conditions that is perfectly isostatic. Each dislocation consists of a three-coordinated plaquette
(enclosed by cyan plaquettes) near a five-coordinated plaquette (enclosed by cyan and yellow plaquettes). All other plaquettes are
four-sided. c, Plastic prototype of a deformed kagome network, built as described in the text. The interior contains two dislocations
which reproduce the configuration from the computer model show in a. Scale bar 5 cm. Inset, Superposition of three configurations
that span the range of the free motion associated with the left dislocation.
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FIG. 2: (a) An image of the localized topological defor-
mation in an experimental realization of the origami strip
(α = π/3, γ1 = γ2 = β1 = β2 = 0.062). (b) 3D reconstruction
of the configuration of the strip from a flat image (γ = 0.124).
(c) Normalized generalized strain u/u0 as a function of dis-
tance from the deformable boundary (measured in number of
vertices) from experiments (shaded curves) with fits to an ex-
ponential decay function (dashed lines). Folding angles f2(1)
(related to u0 via u0 = 1+cos f2(1)) at cell 1 varied from 1.06
to 1.45. (d) Decay lengths obtained from fits to the strain
curves in (c) compared to analytical results for l−1 = ln κ
(Eq. 2). The deviations for small γ are associated with a
energetically costly “uniform bending mode” which requires
facet deformation.

the generalized strain u. Fig. 2(c) shows the strain as
a function of distance along the strip for samples with
different values of the pattern parameter γ.

As shown by a semi-log fit (dashed lines in Fig. 2(c)),
the strains decay exponentially at small distances from
the highly-folded end. For small γ, the folding angles
level off to a roughly constant value at larger distances,
which violates Eq. (1). This saturation reflects a devia-
tion from the ideal geometrical limit due to the finite flex-
ibility of the facets and the finite crease thicknesses. De-
spite the non-ideality of the experimental origami strip,
the decay lengths extracted from the fit are in good agree-
ment with 1/l = ln κ (Fig. 2(d)), highlighting the robust-
ness of our topological design principle.

Having established that marginally rigid 1D periodic
origami can exhibit topological phases, we now ask
whether marginality also leads to similar phases in 2D
origami. We first characterize the class of marginally
rigid 2D periodic origami and show that they must have
a triangulated crease pattern. To avoid trigonometric
complexity inherent to a folding angle representation, we
model the kinematics of triangulated origami as a central-
force spring network with vertices as joints and hinges

as springs. Triangles in such a network automatically
enforce the no-bending constraint on the facets. Arbi-
trary origami can be modeled with spring networks, but
nontriangular faces require additional internal springs to
remain rigid.

In this framework, each joint has 3 degrees of freedom
and each spring adds one constraint, so marginal struc-
tures satisfy E = 3V where E is the number of bonds
and V is the number of joints. In a triangulated surface
without a boundary, each of the F faces is a triangle,
so 3F = 2E. The Euler characteristic χ is defined as
χ = V − E + F ; thus we obtain

E = 3(V − χ). (3)

Periodic origami structures in 2D have the topology of
the torus and thus χ = 0, which shows that triangulations
are marginally rigid.

While achieving marginality in granular packings and
glassy networks requires some fine-tuning in pressure or
coordination, the analogous origami triangulations arise
naturally. Any non-triangular plate in an origami pattern
can be triangulated by adding diagonals, and the bending
of non-triangular plates in real origami can be modeled
as the addition of new creases [4, 6].

Since marginal rigidity arises naturally in periodic
2D triangulated structures, one might then expect a
variety of topological phases by analogy with the 1D
strip. Surprisingly, our calculations indicate otherwise.
As discussed above, an analysis of the rigidity of flat
origami must go beyond linear order. To bypass this
complication, we consider periodic triangulated origami
where we break the flat-state symmetry by introducing
small vertical displacements to the vertices. The lin-
ear rigidity and topological properties of such a trian-
gulated origami can be expressed directly in terms of
the (Fourier-transformed) rigidity matrix R for its as-
sociated spring network [11]. However, for all periodic
fold patterns we have considered, the function detR(q),
a priori a complex-valued function, is in fact real-valued
for all q in the Brillouin zone [37]. Though a proof of
this statement for all triangulated origami eludes us, ex-
tensive numerical tests of a large number of distinct fold
patterns bear out this conjecture. We give details and
partial results in the SI.

A consequence of the “reality” property is that the
winding numbers of detR(q) along any closed curves
in the Brillouin zone (when defined) must be zero, and
hence the topological polarization must vanish. Thus the
localized boundary modes for such an origami must be
isotropically distributed. Even if the hinges in a unit
cell break left-right symmetry, the number of boundary
modes on each edge of a finite patch is left-right and
up-down symmetric. If, as we believe, all triangulated
periodic origami structures have this property, the only
way to get an imbalance in the number of zero modes
at the boundary of origami is by locally removing con-
straints. This behavior contrasts with the 1D strips of
origami as well as marginal spring networks confined to

Figure 1 – Deux exemple de méta-matériaux topologiques. Gauche : Cette structure est strictement
indéformable à l’exception des liens reliés à certains défauts. Extrait de [2]. Droite : Une origami simple
dont le transport des vibrations mécaniques est exactement analogue au transport des électrons dans
un isolant topologique unidimensionnel. Extrait de [3]

Des publications récentes sur ce sujet peuvent donne l’esprit de ce travail :
[1] Topological boundary modes in isostatic lattices
C. Kane and T. Lubensky Nature Physics (2013)
[2] Topological modes bound to dislocations in mechanical metamaterials
Jayson Paulose, Bryan Gin-ge Chen, Vincenzo Vitelli, Nature Physics (2015)
[3] Topological mechanics of origami and kirigami
Bryan Gin-ge Chen, et al arXiv :1508.00795 (2014)

Contact: Denis Bartolo
b Laboratoire de Physique, ENS de Lyon T +33 4 7272 8492
B denis.bartolo@ens-lyon.fr url http://denis114.wordpress.com/

mailto:denis.bartolo@ens-lyon.fr
http://denis114.wordpress.com/

