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a b s t r a c t

Angiosperms display a huge variety of floral forms. The development of the ABC-model for floral organ
identity, almost 20 years ago, has created an excellent basis for comparative floral development (evo-
devo) studies. These have resulted in an increasingly more detailed understanding of the molecular
control circuitry of flower development, and the variations in this circuitry between species with differ-
ent types of flowers. In this review, we analyze the variations in the molecular control of floral organ
development: the changes in the floral ABCs. In addition, we discuss the control and diversification of
inflorescence architecture, as this is another important source of structural diversity between flowering
species.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most important contributions to our understand-
ing of flower development was the formulation of the classic
ABC-model for floral organ identity, by now almost 20 years
ago. This model was based on an interpretation of Arabidop-

sis and Antirrhinum mutants [1], although in the first version
of the Antirrhinum model no A-function was included [2]. In
the early nineties, genes encoding B- and C-functions were
cloned from both species, all of them members of the MADS-box
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gene transcription factor family [3–8]. A-function representa-
tives were only cloned from Arabidopsis, and appeared to be an
AP2 transcription factor gene [9] and the MADS-box gene AP1
[10].

The striking overall similarities in B- and C-function regula-
tion between Arabidopsis and Antirrhinum, while fairly distantly
related within the core eudicots, led to the assumption of a
universal applicability of the ABC-model, although this view-
point was not necessarily shared by the original authors and
other researchers. Nevertheless, the development of the ABC-
model was a major breakthrough in the understanding of floral
development and has acted as a catalyst for comparative flo-

ral development studies (floral evo-devo). These have resulted
in a presently much better understanding of the variation in
the molecular control of the development of different types of
flowers.

In general, we can distinguish two types of variability:
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1) Variations in the molecular networks controlling flower devel-
opment, between species with similar flower architecture. A
large proportion of this variability can be explained by lineage-
specific differences in gene duplications and the subsequent
functional diversification, leading to variations in functional
redundancy, gene loss, and subfunctionalization. Moreover,
there are indications that some aspects of the regulatory net-
work are not conserved between certain species, although the
final result, a four-whorled flower with sepals, petals, stamens
and carpels, is the same. This demonstrates the plasticity of
(molecular) evolution to generate different mechanisms to con-
trol the same process.

2) Variations between species with flowers with different archi-
tectures. Given the enormous variation in floral forms among
angiosperms, it is obvious that important ABC regulatory
changes can be expected in flower types that deviate from the
general sepal–petal–stamen–carpel set-up. Classic examples
can be found in the monocots, such as the tulip flower, and the
flowers of grasses which develop palea/lemma and lodicules
rather than sepals and petals.

This chapter is complemented with a section on diversity of
nflorescence architecture, which forms another important source
f variation between flowering species.

. Variations in the control of floral organ development

.1. The A-function

In Arabidopsis the A-function has been attributed to two genes:
ADS-box gene APETALA1 (AP1) and AP2/ERF transcription fac-

or APETALA2 (AP2) [9,10]. In mutants of these genes, the sepals
re transformed into leaf- or bract-like organs (or develop carpel-
oid features), and the petals are either absent or transformed into
tamen-like structures. These genes thus appear to be required for
he correct specification of the identity of sepals and petals. It is
ebatable whether AP1 and AP2 truly function as perianth organ

dentity genes (reviewed in [11]), they more likely “specify” organ
dentity indirectly by establishing the floral meristem [12] and by
estricting C-function gene expression to the inner floral whorls
13,14]. Functional studies on AP1 lineage genes from other species
ndicate that the role of AP1 in floral meristem specification is most
ikely conserved in other eudicot species, while the contribution of
he gene to perianth formation is not (reviewed in [11]).

In Arabidopsis, the crucial role of the AP2 gene in suppressing
GAMOUS (AG) in the perianth, in turn is regulated by the microRNA
tmiR172 [15]. Recently, doubt has arisen about the universality
f the role of AP2 genes in C-function gene regulation (e.g. [11]).
utants of Petunia and Antirrhinum AP2 orthologs did not exhibit

he same phenotype as Arabidopsis ap2 mutants [16,17]. The blind
bl) mutant in Petunia and fistulata (fis) mutant in Antirrhinum,
owever, display a partial A-function phenotype, producing flow-
rs with petals converted to antheroids [18–20].

Cartolano et al. [21] demonstrated that BL and FIS encode a
omologous microRNA from the miR169-family. BL (Petunia) and
IS (Antirrhinum) are required to confine C-gene expression to the
nner two floral whorls. Suppression is indirect, since C-function

ADS-box genes do not harbor a miR169 target site sequence
nd thus cannot be direct targets. miR169 microRNAs are thought
o target mRNAs of the NF-YA transcription factor family [22].

s NF-Y transcription factor complexes can activate target genes
ia CCAAT-boxes, which are present in the introns of C-function
enes, Cartolano et al. [21] proposed that NF-YA members might be
ble to upregulate C-function gene expression. In this way, miRBL
nd miRFIS would repress expression of C-function genes by post-
lopmental Biology 21 (2010) 100–107 101

transcriptional repression of NF-YA members, although evidence
for this is still lacking.

Two completely different mechanisms thus appear to have
evolved to serve the same function: restricting C-function gene
activity to the inner two floral whorls. This is clearly an example of
variation in molecular networks without a structural difference in
flower make-up. Remarkably, the elements of the miR169-NF-YA
machinery are also present in Arabidopsis, while the AP2-miR172
elements can be found in Antirrhinum and Petunia. Future research
will show whether these complementary mechanisms have lost
some or all function, and/or acquired new ones. Moreover, it is
important to examine which of the two mechanisms (or indeed yet
other mechanisms) of restricting C-function gene activity to the
center of the flower are employed by other angiosperm species.
This information can than help us to unravel the evolutionary his-
tory, and level of conservation, of the miRNA169 and miRNA172
pathways.

2.2. The B-function

Arabidopsis and Antirrhinum both contain two B-function genes
(APETALA3, AP3 plus PISTILLATA, PI; and DEFICIENS, DEF plus GLO-
BOSA, GLO, respectively), which are required to specify petal and
stamen identity in the second and third floral whorls. All of their
single mutants display the same homeotic transformation of petals
to sepals and stamens to carpels. This is in accordance with the
activity of the encoded proteins, DEF and GLO in Antirrhinum
and AP3 and PI in Arabidopsis, as obligate heterodimers [3,4]. The
expression of either of the B-function genes is initiated indepen-
dently in the second and third floral whorls, but the maintenance of
high levels of DEF and GLO or AP3 and PI by autoregulation depends
upon the presence of the heterodimeric protein complex (Fig. 1)
[23–26].

While the DEF/AP3 and GLO/PI lineages originated from a gene
duplication that happened an estimated 260–290 MYA [27,28], it
has become clear that in many species the B-function has been
further shaped and complicated by other rounds of gene duplica-
tions in both gene lineages. Of special interest for the evolution
of the core eudicot flower, is a duplication in the DEF/AP3 lin-
eage which coincided with the radiation of the core eudicots, and
resulted in the euAP3 lineage (to which DEF and AP3 belong) and
the TM6 lineage [29]. euAP3 and TM6 proteins can easily be dis-
tinguished by their distinct C-terminal motifs, the so-called euAP3
and paleoAP3 motifs. Proteins containing a paleoAP3 motif can be
found throughout the angiosperms, while euAP3 motif containing
proteins are found only in the core eudicots. Remarkably, the euAP3
C-terminal motif seems to have originated from the paleoAP3 motif
by a frameshift mutation [30,31]. Many core eudicots have retained
both euAP3 and TM6 gene copies, while Arabidopsis and Antir-
rhinum both have lost the TM6 gene [29,32]. As a consequence,
the function and regulation of TM6 genes was not included in the
original ABC-model.

An early indication that B-function gene regulation might devi-
ate from the original ABC-model in some eudicot species, despite
having a similar floral architecture as Arabidopsis and Antirrhinum,
came from a homeotic Petunia mutant, called green petals (gp, now
Petunia hybrida DEFICIENS, PhDEF) [33]. In this null mutant, petals
fully convert to sepals, but stamen development is unaffected.
The reason behind this aberrant phenotype was only discovered
by a functional analysis of the Petunia B-function genes that also
included the TM6 gene copy (Petunia hybrida TM6, PhTM6) [32,34].

While all aspects of B-regulation described for Arabidopsis and
Antirrhinum appear to be conserved for the duplicated pair of
Petunia PhGLO genes and for PhDEF (GP), PhTM6 clearly does not
obey the ABC rules (Fig. 1). PhTM6 is most highly expressed in
whorls three and four, it does not require functional GLO proteins
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Fig. 1. B-gene function in a selection of angiosperm species. Flower diagram (left),
B-gene expression (middle) and confirmed B-protein dimers (right) for Arabidopsis
thaliana [4], Petunia hybrida [34], Tulipa gesneriana [39], Zea mais [47], and Amborella
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seems not conserved in Arabidopsis, as the Arabidopsis DL ortholog,
richopoda [42]. (++) Indicates high levels of gene expression and (–) indicates a rel-
tively low level or no expression. Abbreviations: sep, sepal; pet, petal; sta, stamen;
ar, carpel; tep, tepal; pa-le, palea and lemma; lod, lodicule.

o maintain high expression levels, and is not involved in petal
dentity control. Rather PhTM6 specifies stamen identity in a fully
edundant fashion with PhDEF [32]. In fact, all TM6 genes ana-
yzed so far, including representatives from Petunia, tomato, grape
nd Gerbera, tend to be expressed at lower levels in the petals,
hile they are expressed at high levels in stamens and carpels

32,35–37].
The clear difference in function between euAP3 and TM6 genes,

t least in Petunia, seems to be largely attributable to a different
egulation of the two proteins: a highly conserved and functionally
ssential 5′ regulatory element present in euAP3 type promoters
38] is completely absent in the PhTM6 5′ regulatory unit. Although
hTM6 is not involved in petal identity control, it can rescue petal
evelopment in a phdef mutant background when expressed from
constitutive promoter [32]. It therefore seems that the differences

n protein sequence between TM6 and euAP3 genes have not had a
ajor impact on their functional diversification.
Other examples of a different set-up of B-class regulation or -

unction can be found in the monocots, in which two main floral
orms can be distinguished.

Animal attracting monocots (e.g. tulips and lilies) have petaloid
rgans, called tepals, in both the first and second whorls, which
ave been associated with expansion of the B-gene expression
omain to the first floral whorl (Fig. 1) (e.g. [39]). This observa-
ion gave rise to the “sliding boundary” hypothesis, which describes

ow floral diversity can be achieved by outward or inward shifts of
-function gene expression ([40], reviewed in [41]). An analogous
fading borders” model has been proposed to explain gradual tran-
itions in organ morphology in some basal angiosperms (Fig. 1)
lopmental Biology 21 (2010) 100–107

([42,43], reviewed in [41]). However, the molecular changes that
have allowed modulation of the B-function domain remain to be
determined.

In grasses on the other hand, regulation and expression of B-
genes in the second and third floral whorls is well conserved
[44–47], but in the second floral whorl, where in eudicot flow-
ers petals form, most grasses produce lodicules: small scale-like or
fleshy organs that swell at anthesis to open the floret (Fig. 1). Since
maize B-function genes are capable of rescuing the corresponding
Arabidopsis B-function mutant phenotypes [47], phenomena like
these are probably best explained by changes in the target genes of
the B-function transcription factors. It will be interesting to try to
find out what changes in target genes have occurred and whether
changes in the B-function proteins themselves or their interacting
partners might have played a role in this.

2.3. The C- and D-function

The Arabidopsis C-function gene AGAMOUS (AG) is involved in
the specification of male and female reproductive organ devel-
opment and in regulating floral meristem determinacy [7,48].
Two additional Arabidopsis AG subfamily genes, SHATTERPROOF1
(SHP1) and SHP2, share largely redundant functions in specify-
ing the fruit dehiscence zone, and function together with AG in
carpel development [49,50]. Another closely related Arabidopsis
gene is the D-function gene SEEDSTICK (STK). STK is involved in
ovule development, and is required for dispersal of the seeds
when the fruit matures [50]. In promoting ovule identity, STK
acts redundantly with SHP1, SHP2 and AG [50]. The D-function
was originally discovered in Petunia [51] and added several years
after the ABC-model was originally proposed, to represent genes
involved in regulating ovule development. As D-function genes
belong to the same MADS-box gene subfamily as C-function
genes and several C-function genes were shown to share func-
tions in ovule development with D-function genes, the D-function
genes are perhaps better regarded as more specialized C-function
genes.

A gene duplication event early in angiosperm evolution led
to the divergent C- and D-function gene lineages (AG clade and
FLORAL BINDING PROTEIN7/11 (FBP7/11) clade, respectively). Rep-
resentatives of the D-lineage appear widely conserved across the
angiosperms [52]. Thus far, most identified FBP7/11 clade (D-
lineage) genes, including core eudicot and grass orthologs, exhibit
ovule-specific expression (e.g. [50,51,53–55]). Functional studies in
Petunia and rice have shown that the role of D-function genes in
the regulation of ovule development is largely conserved between
these two species and Arabidopsis (reviewed in [56]).

More recent gene duplications have taken place in the AG clade
(C-lineage) both within the grasses [57,58] and the eudicots [52].
These have been followed by functional diversification of the gene
copies, resulting in subfunctionalization and probably also neo-
functionalization. Comparative analysis of the Arabidopsis and
Antirrhinum AG clade genes shows the randomness of subfunc-
tionalization: the genes that are involved in the primary aspects
of C-function, PLENA (PLE) and AG, respectively, are actually par-
alogs [59]. As the divergence of functions between the different
AG paralogs in rice and maize is so similar, it is likely that sub-
functionalization of these grass AG clade genes has begun before
the divergence of these two species [57,58]. Remarkably, in rice,
C-function genes might act in conjunction with the YABBY gene
DROOPING LEAF (DL) to specify carpel identity [60]. This mechanism
CRABS CLAW (CRC) plays only a partial role in carpel identity
[61].

Even the AG subfamily genes of the most basal angiosperms and
gymnosperms are expressed in the reproductive tissues, which sug-
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ests a deeply conserved role in the production of these tissues (e.g.
42,62,63]). Overall, the C/D-function is probably the most con-
erved gene function among the MADS-box genes, even though
any subfunctionalization events and several neofunctionaliza-

ion events have taken place after gene duplications within the AG
ubfamily. It is interesting to speculate about the reason for the
igh level of conservation for this gene function. It has been sug-
ested before that there might be a constraint on paralogs within a
pecies such that the sum total of all functions must cover at least
he ancestral function, especially for the AG subfamily, because of
he critical role AG homologs play in reproduction [64]. To fully
ncover the levels of redundancy, and events of subfunctionaliza-
ion and neofunctionalization within the AG subfamily it will be
ecessary to functionally analyze the complete set of AG subfam-

ly members from other species, as was done for Arabidopsis [50].
uch an extensive analysis performed on a number of phylogenet-
cally well chosen species could also shed light on the meaning of
he C/D-lineage split.

.4. The E-function

The E-function was not included in the original ABC-model, but
dded later as it became clear that the A-, B-, and C-function genes
eed other co-factors to produce floral organs [65–68]. Floral organ

dentity is proposed to be regulated by multimeric complexes of
BCDE proteins (floral quartet model; [69]). In these complexes

he B-, C-, and D-function proteins are thought to be important for
rgan-specific gene regulation, while the E-function proteins act
s the mediators for the formation of the protein complexes (e.g.
70,71]).

The E-function in Arabidopsis is encoded by genes from the
ngiosperm-specific SEPALLATA (SEP; previously called AGAMOUS-
IKE2, AGL2) MADS-box gene subfamily [67]. Arabidopsis harbors
our SEP subfamily genes: SEP1–4. The Arabidopsis sep1 sep2 sep3
riple mutant produces sepals in all floral whorls (hence the sub-
amily name SEPALLATA) and shows loss of meristem determinacy
n the center of the flower [67]. Addition of the sep4 mutation
esulted in the conversion of all floral organs into leaves [72]. Thus,
nly the quadruple mutant exhibits a complete loss of floral organ
dentity. The four Arabidopsis SEP genes show a high level of func-
ional redundancy, though the different genes also demonstrate
ome diversification in functions (e.g. [73]).

Multiple SEP homologs are present in distantly related
ngiosperm lineages, suggesting that the SEP subfamily has expe-
ienced several early gene duplication events. The two major
ineages, the AGL9 and the AGL2/3/4 clade, are most likely the result
f a pre-angiosperm duplication, as representatives of both clades
re present in the basal angiosperm Amborella [74]. Additional
ene duplications have occurred in eudicots and the grass mono-
ots [74].

As most species have multiple SEP gene copies with often redun-
ant functions, there is only limited functional data available for SEP
enes. So far only two out of the six Petunia SEP genes have been
nalyzed in detail. Together with a study in Arabidopsis [73], this
roved that also the D-function requires SEP activity [75]. Despite
high level of functional redundancy, the Petunia SEP gene copies
o also exhibit diversification in function. Also the two functionally
nalyzed Gerbera SEP genes show signs of subfunctionalization:
ERBERA REGULATOR OF CAPITULUM DEVELOPMENT1 (GRCD1) has
function, specifically in whorl three, while GRCD2 has a func-

ion, specifically in whorl four [76,77]. The tomato LeMADS-RIN

ene was also shown to have a unique function: the gene seems
nvolved in the ripening of the tomato fruit [78]. The highly variable
xpression patterns of the grass LHS1 lineage SEP genes in differ-
nt species suggest variation in their function in specifying organ
dentity and determinacy of the spikelet meristem [79]. Functional
lopmental Biology 21 (2010) 100–107 103

diversification of these genes is thought to have played a role in the
diversification of spikelet morphology [80].

In general, the number of SEP genes and their expression pat-
terns vary between species. The contribution of specific SEP genes
to various aspects of flower development differs. Still, all available
data seem to indicate a general function of SEP proteins as medi-
ators of the formation of a set of protein complexes. So far, it has
been impossible to determine if there are conserved functions spe-
cific to SEP gene lineages. Only by obtaining more functional data
we can figure out the exact functions of all SEP genes.

Interestingly, extant gymnosperms do not seem to harbor any
SEP genes. They do however contain the closely related AGAMOUS-
LIKE6 (AGL6) genes (reviewed in [41,81]). Recently, Rijpkema et
al. [82] showed that the Petunia hybrida AGL6 gene (PhAGL6, for-
merly called PETUNIA MADS BOX GENE4, or pMADS4) functions
redundantly with the SEP genes FBP2 and FBP5 in petal and anther
development. Around the same time, the characterization of two
more AGL6 gene mutants was published: both the maize bearded-
ear (bde) gene and the rice MOSAIC FLORAL ORGANS1 (MFO1) gene
are involved in the regulation of floral organ identity and floral
meristem determinacy [83,84], and seem to function like SEP genes.
The expression pattern of the Petunia AGL6 gene, and that of its
homologs from other species [82,85,86], further hints at a role in
ovary, ovule and/or gametophyte development, possibly redundant
with other (SEP) MADS-box genes. Conservation of a SEP-like func-
tion for both Petunia, maize and rice AGL6 genes indicates that
comparative SEP functional analyses should also include members
of the AGL6 subfamily. It will be interesting to find out to what
extent AGL6 genes from other species, especially gymnosperms,
perform a similar function.

3. Control and diversification of inflorescence architecture

Angiosperms widely diverged with regard to the moment (i.e.
the season and/or the plant age) that they switch to flowering as
well as to the number and position of flowers that are formed.
Some species generate a single (solitary) flower at the end of a
shoot, while others generate clusters of flowers, known as inflo-
rescences. Inflorescences can be divided into three major classes
based on their mode of development (Fig. 2) [87–89]. In racemes the
shoot apical meristem grows indefinitely (i.e. it is indeterminate).
It generates lateral meristems that terminate by forming a flower,
resulting in a straight axis with many lateral flowers. In cymes, the
apical meristem is determinate and terminates by forming a flower
while growth continues from a lateral (sympodial) meristem that
forms the next “sympodial” inflorescence unit. Panicles occupy an
intermediate position: both apical and lateral meristems initially
continue to grow and generate more lateral meristems and at some
point they all terminate by forming a flower.

Theoretical modeling indicates that inflorescences may have
diverged by alterations in the spatio-temporal regulation of genes
specifying floral or shoot fate of meristems [89]. In a variety of
species, floral meristem identity is specified by widely conserved
transcription factors known as LEAFY (LFY) and APETALA1 (AP1)
in Arabidopsis, together with the F-box protein UNUSUAL FLO-
RAL ORGANS (UFO). Mutations in LFY and AP1 homologs (partially)
convert flowers into inflorescence shoots in a variety of species
(reviewed in [88]). The importance of UFO was initially underesti-
mated as ufo mutations have at most a very weak floral meristem
identity phenotype and primarily affect the development of petals
and stamens in the flower [90,91]. In contrast, mutations in the

Petunia and tomato UFO-orthologs DOUBLE TOP (DOT) and ANAN-
THA (AN) almost completely block floral identity [92–94]. The weak
ufo phenotype seems to be due to genetic redundancy as expres-
sion of a dominant negative form of UFO in Arabidopsis results in a
strong flower-to-shoot transformation [95].
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ate or identity of apical and lateral meristems in distinct inflorescences. Red color i
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Although these floral identity genes encode very similar
nd functionally exchangeable proteins [92,96], their expres-
ion pattern and genetic regulation diverged widely suggesting
hat the upstream transcriptional circuitry has been extensively
ewired during evolution [92]. For example, in Arabidopsis, UFO is
xpressed in the inflorescence in lateral (floral) meristems, but also
n many sites that lack floral identity [97,98]. Moreover, constitu-
ive expression of UFO or the Petunia ortholog DOT does not alter
he timing and positioning of flowers [92,97]. The limiting factor
hat determines when and where flowers are formed in Arabidopsis
s the transcription of LFY and its immediate target AP1. LFY expres-
ion increases during the vegetative phase and when it reaches
certain threshold flowering commences [99–101]. LFY and AP1

xpression in the inflorescence is restricted to the lateral floral
eristems and is excluded from the apical inflorescence meristem

10,102]. If, however, LFY or AP1 are constitutively expressed, pre-
ocious flowering occurs and the inflorescence apex converts into
solitary flower [103,104].

Cymes require a more complex regulation of floral fate as both
pical and lateral meristems ultimately form flowers, but with a
ifferent timing [89]. In cymes like Petunia and tomato, the LFY-
omologs ABERRANT LEAF AND FLOWER (ALF) and FALSIFLORA (FA)
re expressed in a different and wider pattern than LFY [105,106].
LF and FA are expressed during the vegetative phase, while in the

nflorescence they are first expressed in apical meristems and with
ome delay in lateral meristems. The UFO-homologs DOT and AN,
owever, are expressed in a narrower pattern than UFO, as they
re only active during flowering within apical (floral) meristems,
hile their expression in lateral meristems is delayed, much more

han that of ALF [92,94]. That the transcription of DOT rather than
LF is the factor that delimits the formation of flowers in Petunia is

upported by the observation that constitutive expression of DOT or
FO triggers precocious flowering, partially transforms leaves into
etals and converts the cyme into a solitary flower – apparently
ecause floral identity is no longer repressed in lateral inflorescence
eristems [92].
nflorescence types. Top: diagrams showing the relative position and developmental
tes floral identity, blue color non-floral or shoot identity. Bottom: diagrams of fully
s. am, apical meristem; lm, lateral meristem; sm, (lateral) sympodial meristem.

Recently a new regulator was discovered that seems specific
for cymes. EVERGREEN (EVG) from Petunia and COMPOUND INFLO-
RESCENCE (S) of tomato encode a WUSCHEL-RELATED HOMEOBOX
(WOX) transcription factor that is required for floral identity. A
(near) null evg mutation strongly reduces DOT expression and con-
verts flowers into shoots [107]. Tomato s mutants display a weaker
phenotype, possibly because the 3 s alleles – two missense alle-
les and an unsolved rearrangement – are not null. AN expression in
these s mutants is reduced rather than abolished and the formation
of flowers is delayed rather than completely inhibited, resulting in
increased branching and a more compound inflorescence [94]. Sur-
prisingly, EVG and S are not expressed in the apical floral meristem
where DOT is active, but in the newly emerging lateral sympodial
meristem shortly before it becomes visible as a separate dome. This
together with the finding that mutations like extrapetals and her-
mit, which convert the cyme into a solitary flower [105,108], fully
repress the floral identity defect of evg, indicates that EVG pro-
motes DOT expression and floral identity indirectly by an unknown
mechanism [92].

EVG arose as a paralog of a deeply conserved WOX gene repre-
sented by SISTER OF EVERGREEN (SOE) in Petunia and WOX9/STIMPY
and WOX8/STIMPY-LIKE in Arabidopsis [107], which are expressed
throughout plant development and have important roles in pat-
terning of the embryo and maintenance of a variety of meristems
[109–111]. Since Arabidopsis lacks a true EVG homolog with a
similar expression pattern and since EVG is fully redundant in
Petunia mutants with solitary flowers, it presumably represents
a key factor in the evolution of cymose architecture. Given that
tomato s mutants phenocopy the more compound cymes of other
Solanaceae, it appears that modulation of EVG/S activity was also
important for the further diversification of cymes [94].
4. Conclusion

Evo-devo studies on floral development confirm once more
the principle of ‘never change a winning team’ in the sense that
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he team members largely remain the same. The combinatorial
ecruitment of MADS-box proteins to specify floral organ identity
n angiosperms appears to be cast in iron. The majority of varia-
ions on the ABC theme thus far seem to reside in the regulatory
ircuitry of this winning team, rather than in changes in the protein
tructure of the respective team members. Better understanding of
ngiosperm floral diversity at the molecular level therefore might
e obtained from an increased focus on the evolution of both cis
nd trans ABC regulatory elements and variations in downstream
arget gene control. That being said, it is astonishing to see how
n different species sometimes different genes are involved in con-
rolling the same structure (C-function control) and sometimes the
ame genes induce different structures (LEAFY and UFO in diverse
nflorescence types).
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