UMR 5672

logo de l'ENS de Lyon
logo du CNRS logo UCBL
You are here: Home / Seminars / Theoretical Physics / Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials

Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials

Gregory Schehr (LPTMS, CNRS, Université Paris-Sud)
When Jan 23, 2020
from 01:30 PM to 02:30 PM
Where Amphithéâtre E
Attendees Gregory Schehr
Add event to calendar vCal
iCal

Jeudi 23 Janvier

 

Title:  Exact persistence exponent for the 2d-diffusion equation and related Kac polynomials
 

Gregory Schehr (LPTMS, CNRS, Université Paris-Sud)

 

Abstract: 

After an introduction to persistence probabilities and related first-passage time in statistical physics, I will discuss a specific example:
the 2d diffusion equation with random initial conditions. The persistence probability in this problem turns out to be related to the probability
of no real root for Kac random polynomials. I will show that this probability can be computed by using yet another connection, namely to the truncated orthogonal ensemble of random matrices.