Skip to content. | Skip to navigation

Personal tools

You are here: Home / Teams / Systems Biology of Decision Making - O. Gandrillon / Publications (not up to date) / Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation.

Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation.

Nicolas Joly-Tonetti, Jose Vinuelas, Olivier Gandrillon, and Jerome Lamartine (2013)

BMC Genomics, 14:184.

BACKGROUND: MicroRNAs (miRNAs), a group of short non-coding RNAs that negativelyregulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity isan important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. RESULTS: We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. Wefound that proliferative cells irradiated at 6 Gy display a global fall of miRNAexpression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated bythese responding miRNAs. CONCLUSIONS: Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern stronglyrelated to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation response to ensure the short-term survival of irradiated keratinocytes.

automatic medline import

Document Actions