Publications
The last 50 bibliographies
-
Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae.
- Journal : Nat Ecol Evol
- 2024
- The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. Here, to better understand this dual role of environment in the production and selection of phenotypic variation, we determined genotype-phenotype-fitness relationships for mutant strains of Saccharomyces cerevisiae in four environments. Specifically, we measured how promoter mutations of the metabolic gene TDH3 modified expression level and affected growth for four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Mutations with similar effects on expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. We also found that mutations disrupting binding sites for transcription factors had more variable effects on expression among environments than those disrupting the TATA box, which is part of the core promoter. However, mutations with the most environmentally variable effects on fitness were located in the TATA box, because of both the lack of plasticity of TATA box mutations and environment-specific fitness functions. This observation suggests that mutations affecting different molecular mechanisms contribute unequally to regulatory sequence evolution in changing environments.
-
Condensin loop extrusion properties, roadblocks, and role in homology search in S. cerevisiae
- Journal : BioRxiv
- 2024
- The in vivo mechanism, regulations by cis-acting roadblocks, and biological functions of loop extrusion by eukaryotic SMC complexes are incompletely defined. Here, using Hi-C, we identified two condensin-dependent contact stripes at the Recombination Enhancer (RE) and the rDNA in S. cerevisiae. We show that oriented, unidirectional loop extrusion proceeds from these sites with an estimated processivity ∼170 kb and a density ∼0.04-0.18 that varies across the cell cycle. Centromeres and highly-transcribed RNA PolII-dependent genes are permeable condensin roadblocks. Other positionally labile elements such as replication forks and Smc5/6 complexes bound to substrates generated in the absence of Top2 also hinder loop extrusion by condensin. Cohesin is not an obstacle for condensin. Finally, a DNA double-strand break at MAT blocks condensin, which results in the rapid establishment of a long-range RE-MAT loop that juxtaposes the recombination machinery with its HMLα donor target. Hence, all budding yeast SMCs are involved in recombinational DNA repair. We propose a revised model for donor selection during MAT switching that exploits specific properties of loop extrusion by condensin. It can serve as a paradigm for the establishment of other types of selective interactions along chromosomes.
-
ProA and ProB repeat sequences shape genome organization, and enhancers open domains
- Journal : bioRxiv
- 2023
- There is a growing awareness that repeat sequences (RepSeq) - the main constituents of the human genome - are also prime players in its organization. Here we propose that the genome should be envisioned as a supersystem with three main subsystems, each composed of functionally redundant, cooperating elements. We define herein ProA and ProB RepSeqs as sequences that promote either the A/euchromatin or the B/heterochromatin compartment. ProA and ProB RepSeqs shape A/B partitioning, such that the relative proportions of ProA and ProB RepSeqs determine the propensity of a chromosome segment to adopt either an A or a B configuration. In human, core ProA RepSeqs are essentially made of Alu elements, whereas core ProB RepSeqs consist of young L1 and some Endogenous Retroviruses (ERVs) as well as a panel of AT-rich microsatellites and pericentromeric and telomeric satellites. Additionally, RepSeqs with more indefinite character and, importantly, their derivatives known as “transcriptional enhancers”, can shift between ProA and ProB functions and thus act to open or close specific chromatin domains depending on the cellular context. In this framework, genes and their promoters appear as a special class of RepSeqs that, in their active, transcribed state, reinforce the openness of their surroundings. Molecular mechanisms involve cooperativity between ProB elements, presumably underpinned by the condensate-like properties of heterochromatin, which ProA elements oppose in several ways. We provide strong arguments that altered CpG methylation patterns in cancer including a marked loss in the B compartment, result primarily from a global imbalance in the process of CpG methylation and its erasure. Our results suggest that the resulting altered methylation and impaired function of ProB RepSeqs globally weaken the B compartment, rendering it more plastic, which in turn may confer fate plasticity to the cancer cell.Competing Interest StatementThe authors have declared no competing interest.
-
Space-Scale Hybrid Continuous-Discrete Sliding Frank-Wolfe Method
- Journal : IEEE Signal Processing Letters
- 2024
-
Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization.
- Journal : Nat Commun
- 2024
- Although our understanding of the involvement of heterochromatin architecturalfactors in shaping nuclear organization is improving, there is still ongoingdebate regarding the role of active genes in this process. In this study, weutilize publicly-available Micro-C data from mouse embryonic stem cells toinvestigate the relationship between gene transcription and 3D gene folding. Ouranalysis uncovers a nonmonotonic - globally positive - correlation betweenintragenic contact density and Pol II occupancy, independent of cohesin-basedloop extrusion. Through the development of a biophysical model integrating therole of transcription dynamics within a polymer model of chromosome organization,we demonstrate that Pol II-mediated attractive interactions with limited valencybetween transcribed regions yield quantitative predictions consistent withchromosome-conformation-capture and live-imaging experiments. Our work providescompelling evidence that transcriptional activity shapes the 4D genome throughPol II-mediated micro-compartmentalization.
-
Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae.
- Journal : Mol Cell
- 2024
- Homology search is a central step of DNA double-strand break (DSB) repair byhomologous recombination (HR). How it operates in cells remains elusive. Wedeveloped a Hi-C-based methodology to map single-stranded DNA (ssDNA) contactsgenome-wide in S. cerevisiae, which revealed two main homology search phases.Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) isconfined in cis by cohesin-mediated chromatin loop folding. Progressive growth ofstiff NPFs enables exploration of distant genomic sites. Long-range resectiondrives this transition from local to genome-wide search by increasing theprobability of assembling extensive NPFs. DSB end-tethering promotes coordinatedsearch by opposite NPFs. Finally, an autonomous genetic element on chromosome IIIengages the NPF, which stimulates homology search in its vicinity. This workreveals the mechanism of the progressive expansion of homology search thatis orchestrated by chromatin organizers, long-range resection,end-tethering, and specialized genetic elements and that exploits the stiff NPFstructure conferred by Rad51 oligomerization.
-
A new type of non-Mendelian segregation.
- Journal : Nat Ecol Evol
- 2024
-
Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae
- Journal : Molecular Cell
- 2024
- Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
-
The C. elegans SET1 histone methyltransferase SET-2 is not required for transgenerational memory of silencing.
- Journal : MicroPubl Biol
- 2024
- The SET-2 /SET1 histone H3K4 methyltransferase and RNAi pathway components arerequired to maintain fertility across generations in C. elegans . SET-2 preservesthe germline transcriptional program transgenerationally, and RNAi pathways relyon small RNAs to establish and maintain transgenerational gene silencing. Weinvestigated whether the functionality of RNAi-induced transgenerationalsilencing and the composition of pools of endogenous small RNA are affected bythe absence of SET-2 . Our results suggest that defects in RNAi pathways are notresponsible for the transcriptional misregulation observed in the absence ofSET-2 .
-
Multiscale simulations reveal TDP-43 molecular-level interactions driving condensation
- Journal : Biophysical Journal
- 2023
- The RNA-binding protein TDP-43 is associated with mRNA processing and transport from the nucleus to the cytoplasm. TDP-43 localizes in the nucleus as well as accumulating in cytoplasmic condensates such as stress granules. Aggregation and formation of amyloid-like fibrils of cytoplasmic TDP-43 are hallmarks of numerous neurodegenerative diseases, most strikingly present in >90% of amyotrophic lateral sclerosis (ALS) patients. If excessive accumulation of cytoplasmic TDP-43 causes, or is caused by, neurodegeneration is presently not known. In this work, we use molecular dynamics simulations at multiple resolutions to explore TDP-43 self- and cross-interaction dynamics. A full-length molecular model of TDP-43, all 414 amino acids, was constructed from select structures of the protein functional domains (N-terminal domain, and two RNA recognition motifs, RRM1 and RRM2) and modeling of disordered connecting loops and the low complexity glycine-rich C-terminus domain. All-atom CHARMM36m simulations of single TDP-43 proteins served as guides to construct a coarse-grained Martini 3 model of TDP-43. The Martini model and a coarser implicit solvent C⍺ model, optimized for disordered proteins, were subsequently used to probe TDP-43 interactions; self-interactions from single-chain full-length TDP-43 simulations, cross-interactions from simulations with two proteins and simulations with assemblies of dozens to hundreds of proteins. Our findings illustrate the utility of different modeling scales for accessing TDP-43 molecular-level interactions and suggest that TDP-43 has numerous interaction preferences or patterns, exhibiting an overall strong, but dynamic, association and driving the formation of biomolecular condensates.
Link to PubMed entry