Skip to content. | Skip to navigation

Personal tools


UMR 5672

logo de l'ENS de Lyon
logo du CNRS
You are here: Home / Seminars / Séminaires informels des doctorants / Abstract


Exactly soluble theories in two dimensions / Statistical description of turbulent flows
When May 29, 2020
from 01:00 to 02:00
Where BBB (online)
Attendees Harriet WALSH / Jan FRIEDRICH
Add event to calendar vCal

Harriet Walsh : How to find  new exactly solvable theories in two dimensions

L'espace-temps à deux dimensions comprend une classe importante de théories des champs exactement solubles, car les théories conformes y possèdent un nombre infini de symétries et car la factorisation des matrices de diffusion y permet la solution de certaines théories massives. La question se pose de savoir à quoi rassemble l'espace engendré par de telles théories. Introduites par Alexander Zamolodchikov en 2004, les déformations sous la forme « T Tbar » ajoutent des termes d'interaction aux théories tout en conservant leur solubilité, et nous aident ainsi à répondre à cette question. Je parlerai de leur application aux théories à temperature finie, aux théories des cordes, et aux théories supersymétriques, ce dernier point ayant été le sujet d'un travail en collaboration avec Alessandro Sfondrini.

Jan FrieDrich : Statistical description of turbulent flows

I entend to give a very basic overview on the longstandind problem of turbulent flows. Despite he fact the basic equations of tubulent fluid motion, i.e., the Navier-Stokes equation, is known for nearly two centuries, we have yet to identify probabilistic methods that would account for the spatio-temporal complexity exhibited by its velocity field fluctuations. The key problem of the Navier-Stikes equation is that nonlinear interactions are too strong to be grasped within a perturbative treatment. This is especially sobering given the fact that such methods were quite successful in other branches of physics, e.g., renormalization methods in quantum electrodynamics. My main goal is to review prevalent concepts and to point out their failures and shortcomings. I will try to give a brief outlook on the develpment of non-perturbative methods and their potential within a statistical formulation of turbulence.


Link to BBB website