Aller au contenu. | Aller à la navigation

Outils personnels


UMR 5672

logo de l'ENS de Lyon
logo du CNRS
Vous êtes ici : Accueil / Séminaires / Machine Learning and Signal Processing / Leveraging Global Parameters for Flow-based Neural Posterior Estimation

Leveraging Global Parameters for Flow-based Neural Posterior Estimation

Pedro L. C. Rodrigues (post-doctorant équipe Parietal, INRIA-Saclay)
Quand ? Le 25/02/2021,
de 10:00 à 11:00
Participants Pedro L.C. Rodrigues
Ajouter un événement au calendrier vCal

Title : Leveraging Global Parameters for Flow-based Neural Posterior Estimation

Asbtract : Inferring the parameters of a stochastic model based on experimental observations is central to the scientific method. A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations. This arises in many practical situations, such as when inferring the distance and power of a radio source (is the source close and weak or far and strong?) or when estimating the amplifier gain and underlying brain activity of an electrophysiological experiment. In this work, we present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters. Our method extends recent developments in simulation-based inference (SBI) based on normalizing flows to Bayesian hierarchical models. We validate quantitatively our proposal on a motivating example amenable to analytical solutions and then apply it to invert a well known non-linear model from computational neuroscience.

En savoir plus :

Séminaire en ligne : 
Room : Webconf3