Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes / Régulation Post-transcriptionnelle dans l'Infection et l'Oncogenèse - Jalinot/Mocquet / Publications / Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase.

Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase.

Ke-Yu Lu, Wei-Fei Chen, Stephane Rety, Na-Nv Liu, Wen-Qiang Wu, Yang-Xue Dai, Dan Li, Hai-Yun Ma, Shuo-Xing Dou, and Xu-Guang Xi (2018)

Nucleic Acids Res, 46(3):1486-1500.

The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237-780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an alpha-helix, alpha16. The alpha16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized bymore residues, consistent with previous biochemical observations. These findingsprovide a structural and mechanistic basis for understanding the multifunctionalScPif1p.

 
automatic medline import

Actions sur le document