Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes / Régulation Post-transcriptionnelle dans l'Infection et l'Oncogenèse - Jalinot/Mocquet / Publications / Inhibition of HIV-1 replication by cell-penetrating peptides binding Rev.

Inhibition of HIV-1 replication by cell-penetrating peptides binding Rev.

Armelle Roisin, Jean-Philippe Robin, Nathalie Dereuddre-Bosquet, Anne-Laure Vitte, Dominique Dormont, Pascal Clayette, and Pierre Jalinot (2004)

J Biol Chem, 279(10):9208-14.

New therapeutic agents able to block HIV-1 replication are eagerly sought after to increase the possibilities of treatment of resistant viral strains. In this report, we describe a rational strategy to identify small peptide sequences owning the dual property of penetrating within lymphocytes and of binding to a protein target. Such sequences were identified for two important HIV-1 regulatory proteins, Tat and Rev. Their association to a stabilizing domain consisting of human small ubiquitin-related modifier-1 (SUMO-1) allowed the generation of small proteins named SUMO-1 heptapeptide protein transduction domain for binding Tat (SHPT) and SUMO-1 heptapeptide protein transduction domain for binding Rev (SHPR), which are stable and efficiently penetrate within primary lymphocytes. Analysis of the antiviral activity of these proteins showed that one SHPR is active in both primary lymphocytes and macrophages, whereas one SHPT is active only in the latter cells. These proteins may represent prototypes of new therapeutic agents targeting the crucial functions exerted by both viral regulatory factors.

 
automatic medline import

Actions sur le document