Skip to content. | Skip to navigation

Personal tools

You are here: Home / Teams / Alternative splicing and tumoral progression - D. Auboeuf / Publications / Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2beta in development.

Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2beta in development.

Sushma Grellscheid, Caroline Dalgliesh, Markus Storbeck, Andrew Best, Yilei Liu, Miriam Jakubik, Ylva Mende, Ingrid Ehrmann, Tomaz Curk, Kristina Rossbach, Cyril F Bourgeois, James Stevenin, David Grellscheid, Michael S Jackson, Brunhilde Wirth, and David J Elliott (2011)

PLoS Genet, 7(12):e1002390.

Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2beta (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2beta is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2beta binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specificSfrs10 knock-out mouse (Sfrs10(fl/fl); Nestin-Cre(tg/+)). This mouse has defectsin brain development and allowed correlation of genuine physiologically Tra2betaregulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2beta binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2beta protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2beta. Versions of Tra2beta lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2beta protein.

automatic medline import

Document Actions