Skip to content. | Skip to navigation

Personal tools

You are here: Home / Publications / 2010


[Adult T-cell leukemia induced by HTLV-1: before and after HBZ].

Author(s) : Duc Dodon M, Mesnard J, Barbeau B,
Journal : Med Sci (Paris)
Adult T-cell leukemia (ATL) is an often fatal leukemia of CD4+ T lymphocytes associated with a complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1). Although the viral Tax protein is involved in the proliferation of infected cells during the preleukemic stages, Tax expression is not systematically detected in primary leukemic cells. In 2002, we described the characterization of a novel viral protein that we have termed HBZ for HTLV-1 bZIP factor. This viral factor is encoded on the antisense strand of HTLV-1 proviral DNA, demonstrating the existence of antisense transcription from a promoter located in the 3' LTR. HBZ can negatively control the expression of the other viral proteins by blocking the interaction between Tax and ATF/CREB factors and the recruitment of CBP/p300 by Tax on the promoter. Moreover, recent studies found that the viral HBZ gene was always expressed in leukemic cells, suggestingits involvement in the progression of the infected cells towards malignancy.

A multi-scale model of erythropoiesis.

Author(s) : Demin I, Crauste F, Gandrillon O, Volpert V,
Journal : J Biol Dyn
In this paper, a multi-scale mathematical model of erythropoiesis is proposed inwhich erythroid progenitors are supposed to be able to self-renew. Three cellular processes control erythropoiesis: self-renewal, differentiation and apoptosis. We describe these processes and regulatory networks that govern them. Two proteins (ERK and Fas) are considered as the basic proteins participating in this regulation. All erythroid progenitors are divided into several sub-populations depending on their maturity level. Feedback regulations by erythropoietin, glucocorticoids and Fas ligand (FasL) are introduced in the model. The model consists of a system of ordinary differential equations describing intracellularprotein concentration evolution and cell population dynamics. We study steady states and their stability. We carry out computer simulations of an anaemia situation and analyse the results.

A novel concept in antiangiogenic and antitumoral therapy: multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1.

Author(s) : Planel S, Salomon A, Jalinot P, Feige J, Cherradi N,
Journal : Oncogene
Angiogenesis inhibitors have shown clinical benefits in patients with advanced cancer, but further therapeutic improvement is needed. We have previously shown that the zinc finger protein 36, C3H type-like 1 (ZFP36L1) enhances vascular endothelial growth factor (VEGF) mRNA decay through its interaction with AU-richelements within VEGF 3'-untranslated region. In this study, we evaluated the possibility to develop an antiangiogenic and antitumoral strategy using the mRNA-destabilizing activity of ZFP36L1. We engineered a cell-penetrating ZFP36L1, by fusing it to the protein transduction domains (PTDs) TAT derived from HIV, orthe polyarginine peptides R7 or R9. PTD-ZFP36L1 fusion proteins were expressed in bacterial cells and affinity-purified to homogeneity. TAT-, R7- and R9-ZFP36L1 were efficiently internalized into living cells and decreased both endogenous VEGF mRNA half-life and VEGF protein levels in vitro. Importantly, a single injection of R9-TIS11b fusion protein into a high-VEGF expressing tissue in vivo(in this study, the mouse adrenal gland) markedly decreased VEGF expression. We further evaluated the effect of R9-ZFP36L1 on tumor growth using Lewis Lung Carcinoma (LL/2) cells implanted subcutaneously into nude mice. Intratumoral injection of R9-ZFP36L1 significantly reduced tumor growth and markedly decreased the expression of multiple angiogenic and inflammatory cytokines, including VEGF, acidic fibroblast growth factor, tumor necrosis factor alpha, interleukin (IL)-1alpha and IL-6, with a concomitant obliteration of tumor vascularization. These findings indicate that R9-ZFP36L1 fusion protein may represent a novel antiangiogenic and antitumoral agent, and supports the emerging idea that modulation of mRNA stability represents a promising therapeutic approach to treat cancer.

A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis.

Author(s) : Vachias C, Couderc J, Grammont M,
Journal : Development
Organisers control the patterning and growth of many tissues and organs. Correctly regulating the size of these organisers is crucial for proper differentiation to occur. Organiser activity in the epithelium of the Drosophilaovarian follicle resides in a pair of cells called polar cells. It is known thatthese two cells are selected from a cluster of equivalent cells. However, the mechanisms responsible for this selection are still unclear. Here, we present evidence that the selection of the two cells is not random but, by contrast, depends on an atypical two-step Notch-dependent mechanism. We show that this sequential process begins when one cell becomes refractory to Notch activation and is selected as the initial polar cell. This cell then produces a Delta signal that induces a high level of Notch activation in one other cell within the cluster. This Notch activity prevents elimination by apoptosis, allowing its selection as the second polar cell. Therefore, the mechanism used to select precisely two cells from among an equivalence group involves an inductive Delta signal that originates from one cell, itself unable to respond to Notch activation, and results in one other cell being selected to adopt the same fate.Given its properties, this two-step Notch-dependent mechanism represents a novelaspect of Notch action.

Antagonistic factors control the unproductive splicing of SC35 terminal intron.

Author(s) : Dreumont N, Hardy S, Behm-Ansmant I, Kister L, Branlant C, Stevenin J, Bourgeois C,
Journal : Nucleic Acids Res
Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3' untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed aninverse correlation between affinity of SC35 and enhancer strength. The enhancerregion, which is included in a long stem loop, also contains repressor elements,and is recognized by other RNA-binding proteins, notably hnRNP H protein and TARDNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminalexon and specifically repress the use of SC35 terminal 3' splice site. Our studyprovides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment.

Clonal expansion of HTLV-1 positive CD8+ cells relies on cIAP-2 but not on c-FLIP expression.

Author(s) : Zane L, Sibon D, Legras C, Lachuer J, Wierinckx A, Mehlen P, Delfau-Larue M, Gessain A, Gout O, Pinatel C, Lancon A, Mortreux F, Wattel E,
Journal : Virology
Here we investigate the mechanisms by which HTLV-1 infection prevents the cell death of CD8(+) T cells in vivo. We show that upon natural infection, cloned CD8(+) but not CD4(+) cells from patients without malignancy become resistant toFas-mediated cell death and acquire an antiapoptotic transcriptome that includesthe overexpression of cIAP-2 and c-FLIP(L). CD8(+) lymphocyte-restricted cIAP-2 overexpression correlates with resistance to Fas-mediated apoptosis and depends on tax expression via NF-KappaB. In contrast, in the same CD8(+) cells, the HTLV-1-dependent overexpression of c-FLIP(L) does not correlate with resistance to Fas-mediated cell death nor with tax expression. In the present model, infected CD8(+) clones are the only cell subtype in which cIAP-2 expression correlates with resistance to cell death. These results support a role for Tax-dependent cIAP-2 expression in preventing the death of naturally infected CD8(+) cells and thereby in their clonal expansion in vivo.

Complex patterns of gene expression in human T cells during in vivo aging.

Author(s) : Remondini D, Salvioli S, Francesconi M, Pierini M, Mazzatti D, Powell J, Zironi I, Bersani F, Castellani G, Franceschi C,
Journal : Mol Biosyst
Human aging is associated with complex alterations that contribute to remodelling of physiological processes and ultimately manifests in loss of tissue/organ function. Peripheral blood T cells do not escape this phenomenon and undergo profound remodelling with aging. Thus, investigating the effects of aging on T cells transcriptomics and identifying the underlying regulatory mechanisms can be of extreme importance to understand the aging process in the Immune System (IS).To this aim, we performed an analysis of gene expression data of T cells collected from peripheral blood of 25 healthy human donors of different age from25 to more than 95 years, in order to characterize changes that occur throughoutthe entire adult lifespan. By means of microarray analysis, we observed large groups of genes exhibiting non-monotonic expression patterns over time: such behaviour, that could not be observed in typical "two-group" experiments (e.g. young vs. old people) highlights similarities in gene expression profiles of young and "successfully aged" individuals. Genes whose expression profiles change during lifespan were grouped into three main patterns (eigenmodes) to which different biological functions were significantly associated. The analysis of KEGG pathways to which these genes belong indicated that the biological processes altered in T cell aging are not only those typically associated with immune cells (Jak-STAT signalling, T cell receptor signalling, cytokine-cytokine receptor interactions, etc.) but also some not specific of immune cells, such as long-term depression, PPAR and mTOR signalling, glucose and glutathione metabolism, suggesting that T cell aging may be representative of a more generalised aging phenomenon. Thus, the T cell may represent a useful cellular model to study organismal aging. We further searched for over-represented transcription factor binding sites (TFBSs) in the promoter regions of genes clustered by similarity of their age-related patterns to evidence possible co-regulation. A comparison between over-representation of TFBSs and the time course of the corresponding transcription factor (TF) expression levels revealed that a restricted group of TFs may play a central role in driving aging-specific changes in gene expressionof T cells.

Conformational free-energy difference of a miniprotein from nonequilibrium simulations

Author(s) : Spichty M, Cecchini M, Karplus M,
Journal : The Journal of Physical Chemistry Letters
Conformational free-energy differences are essential thermodynamic quantities for understanding the function of many biomolecules. They are accessible from computer simulations, but their accurate calculation is a challenging task. Here nonequilibrium computer simulations and the differential fluctuation theorem are used to evaluate the free-energy difference between two conformational states of a structured miniprotein, the β-hairpin of protein G, with an implicit treatment of the solvent. A molecular dynamics-based protocol is employed for the simulation of rapid switches between the conformational states in both the forward and the reverse direction. From the work performed on the system in the individual switches, the conformational free-energy difference is determined by use of the differential fluctuation theorem. The results are in excellent agreement with reference calculations from a long molecular dynamics simulation and from the confinement method. The nonequilibrium approach is a computationally efficient method for the calculation of conformational free-energy differences for biological systems.

Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi).

Author(s) : Pasco-Viel E, Charles C, Chevret P, Semon M, Tafforeau P, Viriot L, Laudet V,
Journal : PLoS One
BACKGROUND: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial). Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. RESULTS: We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary) or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed twodistinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. SIGNIFICANCE: Dentition diversity in Cypriniformes constitutes an excellent model to study the evolutionof complex morphological structures. This morphological survey clearly advocatesfor extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology.

Genome-wide expression analyses establish dendritic cells as a new osteoclast precursor able to generate bone-resorbing cells more efficiently than monocytes.

Author(s) : Gallois A, Lachuer J, Yvert G, Wierinckx A, Brunet F, Rabourdin-Combe C, Delprat C, Jurdic P, Mazzorana M,
Journal : J Bone Miner Res
Dendritic cells (DCs), mononuclear cells that initiate immune responses, and osteoclasts (OCs), multinucleated bone-resorbing cells, are hematopoietic cells derived from monocytic precursor cells. Using in vitro generated dendritic cells, we previously showed that human and murine DCs could transdifferentiate into resorbing osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL). In this study we globally compared by transcriptomic profiling this new osteoclast differentiation pathway from DCs with the canonical differentiation pathway from monocytes. DNA chip data revealed that starting from two very distinct cell types, treatment with M-CSF and RANKL generated two highly similar types of osteoclast. In particular, DC-derived osteoclasts expressed all the characteristic marker genesof monocyte-derived osteoclasts. Two major molecular events could be observed during osteoclastogenesis: downregulation of a large set of monocyte or DC specific markers, together with upregulation of characteristic osteoclast markergenes. Most interestingly, our transcriptomic data showed a closer molecular profile between DCs and OCs than between monocytes and OCs. Our data establish DCs as a new osteoclast precursor able to generate OCs more efficiently than monocytes.

Highly active antiretroviral treatment against STLV-1 infection combining reverse transcriptase and HDAC inhibitors.

Author(s) : Afonso P, Mekaouche M, Mortreux F, Toulza F, Moriceau A, Wattel E, Gessain A, Bangham C, Dubreuil G, Plumelle Y, Hermine O, Estaquier J, Mahieux R,
Journal : Blood
Approximately 3% of all human T-lymphotropic virus type 1 (HTLV-1)-infected persons will develop a disabling inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis, against which there is currently no efficient treatment. As correlation exists between the proviral load (PVL) and the clinical status of the carrier, it is thought that diminishing the PVL could prevent later occurrence of the disease. We have conducted a study combining valproate, an inhibitor of histone deacetylases, and azidothymidine, an inhibitor of reverse transcriptase, in a series of baboons naturally infected with simian T-lymphotropic virus type 1 (STLV-1), whose PVL was equivalent to that of HTLV-1 asymptomatic carriers. We show that the combination of drugs caused a strong decrease in the PVL and prevented the transient rise in PVL that is seen after treatment with histone deacetylases alone. We then demonstrate that the PVL decline was associated withan increase in the STLV-1-specific cytotoxic T-cell population. We conclude thatcombined treatment with valproate to induce viral expression and azidothymidine to prevent viral propagation is a safe and effective means to decrease PVL in vivo. Such treatments may be useful to reduce the risk of HAM/TSP in asymptomatic carriers with a high PVL.

Human RBMY regulates germline-specific splicing events by modulating the function of the serine/arginine-rich proteins 9G8 and Tra2-{beta}.

Author(s) : Dreumont N, Bourgeois C, Lejeune F, Liu Y, Ehrmann I, Elliott D, Stevenin J,
Journal : J Cell Sci
RBMY is a male germline RNA binding protein and potential alternative splicing regulator, but the lack of a convenient biological system has made its cellular functions elusive. We found that human RBMY fused to green fluorescent protein was strictly nuclear in transfected cells, but spatially enriched in areas around nuclear speckles with some components of the exon junction complex (EJC). Human RBMY (hRBMY) and the EJC components Magoh and Y14 also physically interacted but, unlike these two proteins, hRBMY protein did not shuttle to the cytoplasm. In addition, it relocalised into nucleolar caps after inhibition of RNA polymerase II transcription. Protein interactions were also detected between RBMY and splicing factors 9G8 and transformer-2 protein homolog beta (Tra2-beta), mediated by multiple regions of the RBMY protein that contain serine/arginine-rich dipeptides, but not by the single region lacking such dipeptides. These interactions modulated the splicing of several pre-mRNAs regulated by 9G8 and Tra2-beta. Importantly, ectopic expression of hRBMY stimulated the inclusion of a testis-enriched exon from the Acinus gene, whereas 9G8 and Tra2-beta repressed this exon. We propose that hRBMY associates with regions of the nucleus enrichedin nascent RNA and participates in the regulation of specific splicing events inthe germline by modulating the activity of constitutively expressed splicing factors.

Localized hypermutation and associated gene losses in legume chloroplast genomes.

Author(s) : Magee A, Aspinall S, Rice D, Cusack B, Semon M, Perry A, Stefanovic S, Milbourne D, Barth S, Palmer J, Gray J, Kavanagh T, Wolfe K,
Journal : Genome Res
Point mutations result from errors made during DNA replication or repair, so they are usually expected to be homogeneous across all regions of a genome. However, we have found a region of chloroplast DNA in plants related to sweetpea (Lathyrus) whose local point mutation rate is at least 20 times higher than elsewhere in the same molecule. There are very few precedents for such heterogeneity in any genome, and we suspect that the hypermutable region may be subject to an unusual process such as repeated DNA breakage and repair. The region is 1.5 kb long and coincides with a gene, ycf4, whose rate of evolution has increased dramatically. The product of ycf4, a photosystem I assembly protein, is more divergent within the single genus Lathyrus than between cyanobacteria and other angiosperms. Moreover, ycf4 has been lost from the chloroplast genome in Lathyrus odoratus and separately in three other groups of legumes. Each of the four consecutive genes ycf4-psaI-accD-rps16 has been lost in at least one member of the legume "inverted repeat loss" clade, despite the rarity of chloroplast gene losses in angiosperms. We established that accD has relocated to the nucleus in Trifolium species, but were unable to find nuclear copies of ycf4 or psaI in Lathyrus. Our results suggest that, as well as accelerating sequence evolution, localized hypermutation has contributed to the phenomenon of gene loss or relocation to the nucleus.

Mathematical study of feedback control roles and relevance in stress erythropoiesis.

Author(s) : Crauste F, Demin I, Gandrillon O, Volpert V,
Journal : J Theor Biol
This work is devoted to mathematical modelling of erythropoiesis. We propose a new multi-scale model, in which we bring together erythroid progenitor dynamics and intracellular regulatory network that determines erythroid cell fate. All erythroid progenitors are divided into several sub-populations according to their maturity. Two intracellular proteins, Erk and Fas, are supposed to be determinant for regulation of self-renewal, differentiation and apoptosis. We consider two growth factors, erythropoietin and glucocorticoids, and describe their dynamics.Several feedback controls are introduced in the model. We carry out computer simulations of anaemia and compare the obtained results with available experimental data on induced anaemia in mice. The main objective of this work isto evaluate the roles of the feedback controls in order to provide more insightsinto the regulation of erythropoiesis. Feedback by Epo on apoptosis is shown to be determinant in the early stages of the response to anaemia, whereas regulation through intracellular regulatory network, based on Erk and Fas, appears to operate on a long-term scale.

Natural single-nucleosome epi-polymorphisms in yeast.

Author(s) : Nagarajan M, Veyrieras J, de Dieuleveult M, Bottin H, Fehrmann S, Abraham A, Croze S, Steinmetz L, Gidrol X, Yvert G,
Journal : PLoS Genet
Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin. Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms, tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14acetylation, at a false discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did notimply higher expression of the relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x environment interactions.

On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter.

Author(s) : Coulon A, Gandrillon O, Beslon G,
Journal : BMC Syst Biol
BACKGROUND: Gene promoters can be in various epigenetic states and undergo interactions with many molecules in a highly transient, probabilistic and combinatorial way, resulting in a complex global dynamics as observed experimentally. However, models of stochastic gene expression commonly consider promoter activity as a two-state on/off system. We consider here a model of single-gene stochastic expression that can represent arbitrary prokaryotic or eukaryotic promoters, based on the combinatorial interplay between molecules andepigenetic factors, including energy-dependent remodeling and enzymatic activities. RESULTS: We show that, considering the mere molecular interplay at the promoter, a single-gene can demonstrate an elaborate spontaneous stochastic activity (eg. multi-periodic multi-relaxation dynamics), similar to what is known to occur at the gene-network level. Characterizing this generic model with indicators of dynamic and steady-state properties (including power spectra and distributions), we reveal the potential activity of any promoter and its influence on gene expression. In particular, we can reproduce, based on biologically relevant mechanisms, the strongly periodic patterns of promoter occupancy by transcription factors (TF) and chromatin remodeling as observed experimentally on eukaryotic promoters. Moreover, we link several of its characteristics to properties of the underlying biochemical system. The model can also be used to identify behaviors of interest (eg. stochasticity induced by high TF concentration) on minimal systems and to test their relevance in larger and more realistic systems. We finally show that TF concentrations can regulate manyaspects of the stochastic activity with a considerable flexibility and complexity. CONCLUSIONS: This tight promoter-mediated control of stochasticity may constitute a powerful asset for the cell. Remarkably, a strongly periodic activity that demonstrates a complex TF concentration-dependent control is obtained when molecular interactions have typical characteristics observed on eukaryotic promoters (high mobility, functional redundancy, many alternate states/pathways). We also show that this regime results in a direct and indirectenergetic cost. Finally, this model can constitute a framework for unifying various experimental approaches. Collectively, our results show that a gene - the basic building block of complex regulatory networks - can itself demonstrate a significantly complex behavior.

Patterning by heritage in mouse molar row development.

Author(s) : Prochazka J, Pantalacci S, Churava S, Rothova M, Lambert A, Lesot H, Klein O, Peterka M, Laudet V, Peterkova R,
Journal : Proc Natl Acad Sci U S A
It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mousemolar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions,and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK.We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transientsignaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which mayexplain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.

Perinuclear distribution of heterochromatin in developing C. elegans embryos.

Author(s) : Grant J, Verrill C, Coustham V, Arneodo A, Palladino F, Monier K, Khalil A,
Journal : Chromosome Res
Specific nuclear domains are nonrandomly positioned within the nuclear space, and this preferential positioning has been shown to play an important role in genomeactivity and stability. Well-known examples include the organization of repetitive DNA in telomere clusters or in the chromocenter of Drosophila and mammalian cells, which may provide a means to control the availability of general repressors, such as the heterochromatin protein 1 (HP1). We have specifically characterized the intranuclear positioning of in vivo fluorescence of the Caenorhabditis elegans HP1 homologue HPL-2 as a marker for heterochromatin domains in developing embryos. For this purpose, the wavelet transform modulus maxima (WTMM) segmentation method was generalized and adapted to segment the small embryonic cell nuclei in three dimensions. The implementation of a radial distribution algorithm revealed a preferential perinuclear positioning of HPL-2 fluorescence in wild-type embryos compared with the diffuse and homogeneous nuclear fluorescence observed in the lin-13 mutants. For all other genotypes analyzed, the quantitative analysis highlighted various degrees of preferential HPL-2 positioning at the nuclear periphery, which directly correlates with the number of HPL-2 foci previously counted on 2D projections. Using a probabilistic3D cell nuclear model, we found that any two nuclei having the same number of foci, but with a different 3D probabilistic positioning scheme, can have significantly different counts in the 2D maximum projection, thus showing the deceptive limitations of using techniques of 2D maximum projection foci counts. By this approach, a strong perinuclear positioning of HPL-2 foci was brought into light upon inactivation of conserved chromatin-associated proteins, including the HAT cofactor TRAPP.

Regulation of gene expression in hepatic cells by the mammalian Target of Rapamycin (mTOR).

Author(s) : Jimenez R, Lee J, Francesconi M, Castellani G, Neretti N, Sanders J, Sedivy J, Gruppuso P,
Journal : PLoS One
BACKGROUND: We investigated mTOR regulation of gene expression by studying rapamycin effect in two hepatic cell lines, the non-tumorigenic WB-F344 cells and the tumorigenic WB311 cells. The latter are resistant to the growth inhibitory effects of rapamycin, thus providing us with an opportunity to study the gene expression effects of rapamycin without confounding effects on cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: The hepatic cells were exposed torapamycin for 24 hr. Microarray analysis on total RNA preparations identified genes that were affected by rapamycin in both cell lines and, therefore, modulated independent of growth arrest. Further studies showed that the promoterregions of these genes included E-box-containing transcription factor binding sites at higher than expected rates. Based on this, we tested the hypothesis that c-Myc is involved in regulation of gene expression by mTOR by comparing genes altered by rapamycin in the hepatic cells and by c-Myc induction in fibroblasts engineered to express c-myc in an inducible manner. Results showed enrichment for c-Myc targets among rapamycin sensitive genes in both hepatic cell lines. However, microarray analyses on wild type and c-myc null fibroblasts showed similar rapamycin effect, with the set of rapamycin-sensitive genes being enriched for c-Myc targets in both cases. CONCLUSIONS/SIGNIFICANCE: There is considerable overlap in the regulation of gene expression by mTOR and c-Myc. However, regulation of gene expression through mTOR is c-Myc-independent and cannot be attributed to the involvement of specific transcription factors regulated by the rapamycin-sensitive mTOR Complex 1.

Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.

Author(s) : Koop D, Holland N, Semon M, Alvarez S, de Lera A, Laudet V, Holland L, Schubert M,
Journal : Dev Biol
Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcriptionfactors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along theA-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.

Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast.

Author(s) : Bernard P, Drogat J, Dheur S, Genier S, Javerzat J,
Journal : Mol Cell Biol
Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptionalprocessing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether italso relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize atcentromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhapswith other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways.

Synthesis, spectroscopic and DNA alkylating properties of malondialdehyde (MDA) bis-imine fluorescent adducts.

Author(s) : Meguellati K, Spichty M, Ladame S,
Journal : Mol Biosyst
The synthesis of a series of malondialdehyde (MDA) fluorescent adducts that mimic the well-known pentamethine cyanine dyes is reported. This new subclass of bis-imino dyes shares some common spectroscopic properties with their polymethine analogues although absorbing at significantly shorter wavelengths. A small library of trimethine and pentamethine cyanine dye bis-imino analogues have beensynthesised and characterised that cover a spectral range from blue to orange. Of particular interest is their capacity to act as mono- and bis-alkylating agents of nucleosides in general and of cytidine (and 2'-deoxycytidine) in particular.

Tax gene expression and cell cycling but not cell death are selected during HTLV-1 infection in vivo.

Author(s) : Zane L, Sibon D, Jeannin L, Zandecki M, Delfau-Larue M, Gessain A, Gout O, Pinatel C, Lancon A, Mortreux F, Wattel E,
Journal : Retrovirology
BACKGROUND: Adult T cell leukemia results from the malignant transformation of aCD4+ lymphoid clone carrying an integrated HTLV-1 provirus that has undergone several oncogenic events over a 30-60 year period of persistent clonal expansion. Both CD4+ and CD8+ lymphocytes are infected in vivo; their expansion relies on CD4+ cell cycling and on the prevention of CD8+ cell death. Cloned infected CD4+but not CD8+ T cells from patients without malignancy also add up nuclear and mitotic defects typical of genetic instability related to the expression of the virus-encoded oncogene tax. HTLV-1 expression is cancer-prone in vitro, but in vivo numerous selection forces act to maintain T cell homeostasis and are possibly involved in clonal selection. RESULTS: Here we demonstrate that the HTLV-1 associated CD4+ preleukemic phenotype and the specific patterns of CD4+ and CD8+ clonal expansion are in vivo selected processes. By comparing the effects of recent (1 month) experimental infections performed in vitro and thoseobserved in cloned T cells from patients infected for >6-26 years, we found thatin chronically HTLV-1 infected individuals, HTLV-1 positive clones are selected for tax expression. In vivo, infected CD4+ cells are positively selected for cell cycling whereas infected CD8+ cells and uninfected CD4+ cells are negatively selected for the same processes. In contrast, the known HTLV-1-dependent prevention of CD8+ T cell death pertains to both in vivo and in vitro infected cells. CONCLUSIONS: Therefore, virus-cell interactions alone are not sufficient to initiate early leukemogenesis in vivo.

The 3' untranslated region of the Andes hantavirus small mRNA functionally replaces the poly(A) tail and stimulates cap-dependent translation initiation from the viral mRNA.

Author(s) : Vera-Otarola J, Soto-Rifo R, Ricci E, Ohlmann T, Darlix J, Lopez-Lastra M,
Journal : J Virol
In the process of translation of eukaryotic mRNAs, the 5' cap and the 3' poly(A)tail interact synergistically to stimulate protein synthesis. Unlike its cellular counterparts, the small mRNA (SmRNA) of Andes hantavirus (ANDV), a member of theBunyaviridae, lacks a 3' poly(A) tail. Here we report that the 3' untranslated region (3'UTR) of the ANDV SmRNA functionally replaces a poly(A) tail and synergistically stimulates cap-dependent translation initiation from the viral mRNA. Stimulation of translation by the 3'UTR of the ANDV SmRNA was found to be independent of viral proteins and of host poly(A)-binding protein.

Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants.

Author(s) : Brioudes F, Thierry A, Chambrier P, Mollereau B, Bendahmane M,
Journal : Proc Natl Acad Sci U S A
The growth of an organism and its size determination require the tight regulation of cell proliferation and cell growth. However, the mechanisms and regulatory networks that control and integrate these processes remain poorly understood. Here, we address the biological role of Arabidopsis translationally controlled tumor protein (AtTCTP) and test its shared functions in animals and plants. The data support a role of plant AtTCTP as a positive regulator of mitotic growth byspecifically controlling the duration of the cell cycle. We show that, in contrast to animal TCTP, plant AtTCTP is not implicated in regulating postmitotic growth. Consistent with this finding, plant AtTCTP can fully rescue cell proliferation defects in Drosophila loss of function for dTCTP. Furthermore, Drosophila dTCTP is able to fully rescue cell proliferation defects in Arabidopsis tctp knockouts. Our data provide evidence that TCTP function in regulating cell division is part of a conserved growth regulatory pathway sharedbetween plants and animals. The study also suggests that, although the cell division machinery is shared in all multicellular organisms to control growth, cell expansion can be uncoupled from cell division in plants but not in animals.