Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes

Équipes

Dynamics and Control of Biological Assemblies and Macromolecular Machines - J. Martin / R. Pellarin
We are a horizontal team of four researchers in computational biology. We study molecular machines and assemblies at different scales (atomistic, coarse-grained, normal modes analysis, and kinetic models) in order to understand and control their functioning in cellular and pathological context. Leveraging the power of molecular modeling, we employ advanced techniques and high performance computing to simulate and analyze the behavior of biological molecules with a focus on unraveling the intricacies of their interactions. Our expertise extends to structural bioinformatics, computational chemistry and integrative modeling where we combine in silico approaches and experimental data to extract meaningful information from biological data, aiding in the interpretation and control of complex molecular structures, their interactions and functions.
Complexité, plasticité et rôles des miARNs - K. Jouravleva
We elucidate the mechanism of modular layer of post-transcriptional control formed by miRNAs, which confers developmental robustness and enables generating complex cellular responses to environmental challenges and pathological conditions.
Mécanique du génome - A. Piazza
DNA is a busy molecule teeming with a zoo of static binders and molecular motors. DNA's informational, structural, and organizational properties are exploited by, or regulate, multiple protein-mediated activities. Our goal is to determine the interplay between the active 3D organization of DNA in the nucleus and the molecular process of target search by protein in DNA. We study this general question in the particular case of the repair of DNA break by homologous recombination. Homologous recombination is a universal DNA break repair pathway that uses an intact DNA molecule as a repair template, which has to be identified in the whole genome by the broken molecule. We study the basic mechanism of this search for homology in both somatic cells and in meiosis using budding yeast as a model organism.
Biologie physique de la Chromatine - D. Jost
En lien étroit avec les expériences, notre recherche aborde des questions biologiques génériques ou spécifiques sur la chromatine et la régulation des gènes en développant des modèles physiques et computationnels. Plus particulièrement, nous nous intéressons à la dynamique spatio-temporelle des chromosomes eucaryotes. Notre recherche aborde des questions importantes concernant le couplage entre l'organisation 3D et les fonctions de la chromatine. Notre objectif est de fournir des principes universels régissant le repliement et la régulation de la chromatine, tout en appliquant nos approches à des problèmes spécifiques et fondamentaux de la génomique 3D.
Epigénétique et Formation du Zygote - B. Loppin
The formation of a diploid zygote from two highly different gametes is a critical aspect of sexual reproduction in animals. Notably, the transmission of the paternal genome implies unique chromatin reorganization events that take place during spermiogenesis and at fertilization.
Métabolisme des ARNs au cours de la réponse immunitaire et de l’infection - E. Ricci
We are interested in post-transcriptional control mechanisms that regulate gene expression in cells of the immune system and during pathogen infections. Through the use of high-throughput sequencing and biochemical approaches we aim at identifying new regulatory layers that govern immune cell activation and host-pathogen interactions.
Epigenetic regulation of cell identity and environmental stress responses - F. Palladino
We are interested in how epigenetic regulation contributes to germline function and organismal homeostasis in C. elegans. For this, we combine genetics, genome-wide approaches and microscopy techniques.
Evolution des Processus Cellulaires chez les Nématodes - M. Delattre
We investigate unconventional modes of DNA transmission and genome regulation, exploring their evolutionary origins and consequences. Our primary focus is on nematode species that are lab tractable, enabling integration of bioinformatic and experimental methodologies
Mort Cellulaire Régulée et Génétique de la Neurodégénerescence - B. Mollereau
The general goal of our lab is to understand the mechanisms of cell death, ER stress, autophagy and metabolism during development and in neurodegenerative diseases. We characterize those responses in physiological and pathological situations in the Drosophila retina, brain and during spermatogenesis.
Quantitative regulatory genomics - M. Francesconi
Pourquoi les individus sont-ils différents ? Nous abordons cette question fondamentale en étudiant les sources génétiques et non génétiques de variation phénotypique, à l'aide d'approches de biologie des systèmes de calcul et d'expérimentation à l'échelle du génome dans des organismes modèles. En particulier, nous voulons comprendre comment l'expression des gènes est régulée dans l'espace et dans le temps pour contribuer à la variation phénotypique.
Regulation of Genome Architecture and Dynamics of Splicing (ReGArDS) - D. Auboeuf / C. Bourgeois
Comparative and Integrative Genomics of Organ Development - S.Pantalacci/M. Semon
We compare genomes and transcriptomes to highlight general rules about the development and/or the evolution of organs.
Régulation Post-transcriptionnelle dans l'Infection et l'Oncogenèse - Jalinot/Mocquet
Our main research interest is to decipher the molecular mechanisms underlying oncogenesis, with a particular interest in the role of genetic instability in the process. Towards this goal we focused our attention on leukemogenesis driven by infection with the human T-cell lymphotropic virus type 1 (HTLV-1).
Epithelial differentiation and morphogenesis in Drosophila - M. Grammont
Systems Biology of Decision Making - O. Gandrillon
The molecular mechanisms controlling decision making at the cellular level between self-renewal and differentiation are still poorly understood. The central question of our group consists in understanding the molecular mechanisms controlling self-renewal and the alteration of these mechanisms in relation to the onset of cancer.
Chromatin Dynamics in Mitotic Chromosome Assembly - P. Bernard
The ability of the genome to adopt a dynamic 3D organisation underlies most DNA transactions. The profound reorganisation of long chromatin fibres into rod-shaped chromosomes in mitosis is an iconic example of this structural dynamics.The main goal of our research is to understand the cellular mechanisms that take place at the chromatin level for the assembly of segregation-competent mitotic chromosomes. We use the fission yeast Schizosaccharomyces pombe and human cultured cells as model systems.