Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Équipes / Epigenetic regulation of cell identity and environmental stress responses - F. Palladino / Publications / SIN3 acts in distinct complexes to regulate the germline transcriptional program in C. elegans.

SIN3 acts in distinct complexes to regulate the germline transcriptional program in C. elegans.

V J Robert, M Caron, L Gely, A Adrait, V Pakulska, Y Couté, M Chevalier, C G Riedel, C Bedet, and F Palladino (2023)

Development.

The SIN3 transcriptional coregulator influences gene expression through multipleinteractions that include histone deacetylases (HDACs). Haploinsufficiency andmutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and relatedintellectual disability (ID)/autism syndromes, emphasizing its key role indevelopment. However, little is known about the diversity of its interactions andfunctions in developmental processes. Here we show that loss of SIN-3, the singleSIN3 homologue in Caenorhabditis elegans, results in maternal effect sterilityassociated with deregulation of the germline transcriptome, including desilencingof X-linked genes. We identify at least two distinct SIN3 complexes containingspecific HDACs, and show that they differentially contribute to fertility. Singlecell smFISH reveals that in sin-3 mutants, the X chromosome becomes re-expressedprematurely and in a stochastic manner in individual germ cells, suggesting arole for SIN-3 in its silencing. Furthermore, we identify histone residues whoseacetylation increases in the absence of SIN3. Together, this work provides apowerful framework for the in vivo study of SIN3 and associated proteins.

 
automatic medline import

Actions sur le document