Skip to content. | Skip to navigation

Personal tools



This folder holds the following references to publications, sorted by year and author.

There are 24 references in this bibliography folder.

Chédin, F, Hartono, SR, Sanz, LA, and Vanoosthuyse, V (2021).
Best practices for the visualization, mapping, and manipulation of R-loops.
EMBO J, 40(4):e106394.

Rivosecchi, J, Jost, D, Vachez, L, Gautier, FD, Bernard, P, and Vanoosthuyse, V (2021).
RNA polymerase backtracking results in the accumulation of fission yeast condensin at active genes.
Life Sci Alliance, 4(6).

Berthezene, J, Reyes, C, Li, T, Coulon, S, Bernard, P, Gachet, Y, and Tournier, S (2020).
Aurora B and condensin are dispensable for chromosome arm and telomere separation during meiosis II.
Mol Biol Cell, 31(9):889-905.

Carrasco-Salas, Y, Malapert, A, Sulthana, S, Molcrette, B, Chazot-Franguiadakis, L, Bernard, P, Chedin, F, Faivre-Moskalenko, C, and Vanoosthuyse, V (2019).
The extruded non-template strand determines the architecture of R-loops.
Nucleic Acids Res.

Rivosecchi, J, Larochelle, M, Teste, C, Grenier, F, Malapert, A, Ricci, EP, Bernard, P, Bachand, F, and Vanoosthuyse, V (2019).
Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription.
EMBO J, 38(16):e101955.

Hocquet, C, Robellet, X, Modolo, L, Sun, X, Burny, C, Cuylen-Haering, S, Toselli, E, Clauder-Munster, S, Steinmetz, L, Haering, CH, Marguerat, S, and Bernard, P (2018).
Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription.
Elife, 7.

Vanoosthuyse, V (2018).
Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops.
Noncoding RNA, 4(2).

Hartono, SR, Malapert, A, Legros, P, Bernard, P, Chedin, F, and Vanoosthuyse, V (2017).
The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast.
J Mol Biol.

Robellet, X, Vanoosthuyse, V, and Bernard, P (2017).
The loading of condensin in the context of chromatin.
Curr Genet, 63(4):577-589.

Toselli-Mollereau, E, Robellet, X, Fauque, L, Lemaire, S, Schiklenk, C, Klein, C, Hocquet, C, Legros, P, N'Guyen, L, Mouillard, L, Chautard, E, Auboeuf, D, Haering, CH, and Bernard, P (2016).
Nucleosome eviction in mitosis assists condensin loading and chromosome condensation.
EMBO J, 35(14):1565-81.

Bernard, P and Vanoosthuyse, V (2015).
Does transcription play a role in creating a condensin binding site?
Transcription, 6(1):12-6.

Pommier, RM, Gout, J, Vincent, DF, Alcaraz, LB, Chuvin, N, Arfi, V, Martel, S, Kaniewski, B, Devailly, G, Fourel, G, Bernard, P, Moyret-Lalle, C, Ansieau, S, Puisieux, A, Valcourt, U, Sentis, S, and Bartholin, L (2015).
TIF1gamma Suppresses Tumor Progression by Regulating Mitotic Checkpoints and Chromosomal Stability.
Cancer Res, 75(20):4335-50.

Legros, P, Malapert, A, Niinuma, S, Bernard, P, and Vanoosthuyse, V (2014).
RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
PLoS Genet, 10(11):e1004794.

Robellet, X, Fauque, L, Legros, P, Mollereau, E, Janczarski, S, Parrinello, H, Desvignes, J, Thevenin, M, and Bernard, P (2014).
A genetic screen for functional partners of condensin in fission yeast.
G3 (Bethesda), 4(2):373-81.

Vanoosthuyse, V, Legros, P, van der Sar, SJA, Yvert, G, Toda, K, Le Bihan, T, Watanabe, Y, Hardwick, K, and Bernard, P (2014).
CPF-associated phosphatase activity opposes condensin-mediated chromosome condensation.
PLoS Genet, 10(6):e1004415.

Bernard, P, Drogat, J, Dheur, S, Genier, S, and Javerzat, J (2010).
Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast.
Mol Cell Biol, 30(5):1145-57.

Bernard, P, Schmidt, CK, Vaur, S, Dheur, S, Drogat, J, Genier, S, Ekwall, K, Uhlmann, F, and Javerzat, J (2008).
Cell-cycle regulation of cohesin stability along fission yeast chromosomes.
EMBO J, 27(1):111-21.

Bernard, P, Drogat, J, Maure, J, Dheur, S, Vaur, S, Genier, S, and Javerzat, J (2006).
A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4.
Curr Biol, 16(9):875-81.

Bailis, JM, Bernard, P, Antonelli, R, Allshire, RC, and Forsburg, SL (2003).
Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres.
Nat Cell Biol, 5(12):1111-6.

Bernard, P and Allshire, R (2002).
Centromeres become unstuck without heterochromatin.
Trends Cell Biol, 12(9):419-24.

Bernard, P, Maure, JF, and Javerzat, JP (2001).
Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation.
Nat Cell Biol, 3(5):522-6.

Bernard, P, Maure, JF, Partridge, JF, Genier, S, Javerzat, JP, and Allshire, RC (2001).
Requirement of heterochromatin for cohesion at centromeres.
Science, 294(5551):2539-42.

Javerzat, JP, McGurk, G, Cranston, G, Barreau, C, Bernard, P, Gordon, C, and Allshire, R (1999).
Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation.
Mol Cell Biol, 19(7):5155-65.

Bernard, P, Hardwick, K, and Javerzat, JP (1998).
Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis.
J Cell Biol, 143(7):1775-87.

Document Actions