Aller au contenu. | Aller à la navigation

Outils personnels

Navigation
Vous êtes ici : Accueil / Publications / 2017

2017

1032

Author(s) : Scadden D,
Journal : Experimental Hematology
2017

An miRNA-DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia.

Author(s) : Solly F, Koering C, Mohamed A, Maucort-Boulch D, Robert G, Auberger P, Flandrin-Gresta P, Ades L, Fenaux P, Kosmider O, Tavernier-Tardy E, Cornillon J, Guyotat D, Campos L, Mortreux F, Wattel E,
Journal : Clin Cancer Res
2017
Purpose: Azacitidine inhibits DNA methyltransferases, including DNMT1, and is currently the standard of care for patients with higher-risk myelodysplastic syndrome (HRMDS) or low blast count acute myeloid leukemia (AML).Experimental Design: The expression of 754 miRNAs was compared in azacitidine-resistant and azacitidine-sensitive myelodysplastic syndrome cells. We investigated the role of differentially expressed miRNAs on DNMT1 expression and azacitidine resistance in vitro We next evaluated anti-DNMT1 miRNA expression in pretreatment bone marrow samples derived from 75 patients treated with azacitidine for HRMDS or AML.Results: Seven miRNAs, including 5 that in silico targeted the DNMT1 3' UTR,were repressed in azacitidine-resistant cells in which DNMT1 protein levels weresignificantly higher. Ectopic anti-DNMT1 miRNA expression decreased DNMT1 expression and increased azacitidine sensitivity, whereas specific inhibition ofendogenous anti-DNMT1 miRNAs increased DNMT1 expression and triggered azacitidine resistance. In patients treated with azacitidine, decreased expression of anti-DNMT1 miRNAs was associated with poor outcome. miR-126* had the strongest prognostic impact. Patients with miR-126*low myelodysplastic syndrome had significantly lower response rates (P = 0.04) and higher relapse rates (P = 0.03), as well as shorter progression-free (PFS; P = 0.004) and overall survival(OS; P = 0.004). Multivariate analysis showed that age, miR-126* expression, andrevised International Prognostic Scoring System risk independently predicted PFSand OS. In 15 patient samples collected over time, decreased miRNA expression levels were associated with secondary resistance.Conclusions: A decreased expression of anti-DNMT1 miRNAs might account for azacitidine resistance in HRMDS and AML, and measuring miRNA expression before and during treatment might help predict primary or secondary azacitidine resistance. Clin Cancer Res; 23(12); 3025-34. (c)2016 AACR.

Eicosapentaenoic acid modulates the synergistic action of CREB1 and ID/E2A family members in the rat pup brain and mouse embryonic stem cells.

Author(s) : Rossi M, Spichty M, Attorri L, Distante C, Nervi C, Salvati S, Vitelli L,
Journal : Biochim Biophys Acta
2017
The aim of this study was to investigate the molecular mechanism by which eicosapentaenoic acid (EPA) may exert neuroprotective effects through an "EPA-cyclic AMP response element-binding protein (CREB)" signaling pathway. The current study reveals that EPA modulates the exquisite interplay of interaction of CREB1 with the inhibitor of DNA binding (ID) and E2A family members, thereby delivering mechanistic insights into specific neural differentiation program. Inthis scenario, our work provides evidence for the capability of CREB1 to sequester ID:E2A family members in brain tissues and neural differentiating mouse embryonic stem cells (mESCs) through formation of a [CREB1]2:ID2:E47 tetrameric complex.In essence, the molecular function of CREB1 is to dynamically regulate the location-specific assembly or disassembly of basic-helix-loop-helix (bHLH):HLH protein complexes to mediate the activation of neural/glial target genes. Together, these findings support the one-to-many binding mechanism of CREB1 and indicate that EPA treatment potentiates the integration of CREB dependent signaling with HLH/bHLH transcriptional network, adding specificity tothe CREB1-mediated gene regulation during neural/glial differentiation. Our current research on the EPA-CREB axis could reveal new molecular targets for treating neurogenerative disease.

Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina.

Author(s) : Cubizolle A, Guillou L, Mollereau B, Hamel C, Brabet P,
Journal : PLoS One
2017
In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which theseprocesses are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle usingtransgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice). The mice displayed no delay in the kinetics of regeneration of the visualchromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG micethan in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40%) of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were moresusceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.

Genomic regions controlling shape variation in the first upper molar of the house mouse.

Author(s) : Pallares L, Ledevin R, Pantalacci S, Turner L, Steingrimsson E, Renaud S,
Journal : Elife
2017
Numerous loci of large effect have been shown to underlie phenotypic variation between species. However, loci with subtle effects are presumably more frequently involved in microevolutionary processes but have rarely been discovered. We explore the genetic basis of shape variation in the first upper molar of hybrid mice between Mus musculus musculus and M. m. domesticus. We performed the first genome-wide association study for molar shape and used 3D surface morphometrics to quantify subtle variation between individuals. We show that many loci of small effect underlie phenotypic variation, and identify five genomic regions associated with tooth shape; one region contained the gene microphthalmia-associated transcription factor Mitf that has previously been associated with tooth malformations. Using a panel of five mutant laboratory strains, we show the effect of the Mitf gene on tooth shape. This is the first report of a gene causing subtle but consistent variation in tooth shape resembling variation in nature.

HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression.

Author(s) : Terol M, Gazon H, Lemasson I, Duc-Dodon M, Barbeau B, Cesaire R, Mesnard J, Peloponese J,
Journal : Leukemia
2017
Human T-cell leukemia virus type 1 (HTLV-1) basic-leucine zipper (bZIP) factor (HBZ) is a key player in proliferation and transformation of HTLV-1-infected cells, thus contributing to adult T-cell leukemia (ATL) development. HBZ deregulates gene expression within the host cell by interacting with several cellular partners. Through its C-terminal ZIP domain, HBZ is able to contact andactivate JunD, a transcription factor of the AP-1 family. JunD mRNA is intronless but can generate two protein isoforms by alternative translation initiation: JunD full-length and Delta JunD, an N-terminal truncated form unresponsive to the tumor suppressor menin. Using various cell lines and primary T-lymphocytes, we show that after serum deprivation HBZ induces the expression of Delta JunD isoform. We demonstrate that, unlike JunD, Delta JunD induces proliferation and transformation of cells. To decipher the mechanisms for Delta JunD production, we looked into the translational machinery and observed that HBZ induces nuclear retention of RPS25 mRNA and loss of RPS25 protein expression, a component of thesmall ribosomal subunit. Therefore, HBZ bypasses translational control of JunD uORF and favors the expression of Delta JunD. In conclusion, we provide strong evidences that HBZ induces Delta JunD expression through alteration of the cellular translational machinery and that the truncated isoform Delta JunD has acentral role in the oncogenic process leading to ATL.Leukemia advance online publication, 24 March 2017; doi:10.1038/leu.2017.74.

HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation.

Author(s) : Percher F, Curis C, Peres E, Artesi M, Rosewick N, Jeannin P, Gessain A, Gout O, Mahieux R, Ceccaldi P, Van den Broeke A, Duc Dodon M, Afonso P,
Journal : Nat Commun
2017
The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo.

Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

Author(s) : Crauste F, Mafille J, Boucinha L, Djebali S, Gandrillon O, Marvel J, Arpin C,
Journal : Cell Syst
2017
Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formalapproach based on mathematical models describing the dynamics of population sizeevolution to test potential progeny links and demonstrate that most cells followa linear naive-->early effector-->late effector-->memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a fewearly experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated.

Identification of protein features encoded by alternative exons using Exon Ontology.

Author(s) : Tranchevent L, Aube F, Dulaurier L, Benoit-Pilven C, Rey A, Poret A, Chautard E, Mortada H, Desmet F, Chakrama F, Moreno-Garcia M, Goillot E, Janczarski S, Mortreux F, Bourgeois C, Auboeuf D,
Journal : Genome Res
2017
Transcriptomic genome-wide analyses demonstrate massive variation of alternativesplicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applyingthis strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insightinto the protein features encoded by alternative exons and investigating whethercoregulated exons contain the same biological information.

Maternal age generates phenotypic variation in Caenorhabditis elegans.

Author(s) : Perez M, Francesconi M, Hidalgo-Carcedo C, Lehner B,
Journal : Nature
2017
Genetically identical individuals that grow in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria, nematodes, rodents and humans. With some exceptions, the causes are poorly understood. Here we show that isogenic Caenorhabditis elegans nematodes vary in their size at hatching, speed of development, growth rate, starvation resistance, fecundity, and also in the rate of development of their germline relative to that of somatic tissues. We show that the primary cause of this variation is the age of an individual's mother, with the progeny of young mothers exhibiting several phenotypic impairments. We identify age-dependent changes in the maternal provisioning of the lipoprotein complex vitellogenin to embryos as the molecular mechanism that underlies the variation in multiple traits throughout the life of an animal. The production of sub-optimal progeny by youngmothers may reflect a trade-off between the competing fitness traits of a short generation time and the survival and fecundity of the progeny.

Mechanical constraint from growing jaw facilitates mammalian dental diversity.

Author(s) : Renvoise E, Kavanagh K, Lazzari V, Hakkinen T, Rice R, Pantalacci S, Salazar-Ciudad I, Jernvall J,
Journal : Proc Natl Acad Sci U S A
2017
Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions ofdeveloping molars and jaws, computational modeling of cusp patterning, and toothexplants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw-tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis.

microRNAs stimulate translation initiation mediated by HCV-like IRESes.

Author(s) : Mengardi C, Limousin T, Ricci E, Soto-Rifo R, Decimo D, Ohlmann T,
Journal : Nucleic Acids Res
2017
MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by recognizing and hybridizing to a specific sequence generally located in the 3 untranslated region (UTR) of targeted mRNAs. miRNA-induced inhibition of translation occurs during the initiation step, most probably at the level of ribosome scanning. In this process, the RNA-induced silencing complex interacts both with PABP and the 43S pre-initiation complex to disrupt scanning of the 40Sribosome. However, in some specific cases, miRNAs can stimulate translation. Although the mechanism of miRNA-mediated upregulation is unknown, it appears that the poly(A) tail and the lack of availability of the TNRC6 proteins are amongst major determinants. The genomic RNA of the Hepatitis C Virus is uncapped, non-polyadenylated and harbors a peculiar internal ribosome entry site (IRES) that binds the ribosome directly to the AUG codon. Thus, we have exploited the unique properties of the HCV IRES and other related IRESes (HCV-like) to study how translation initiation can be modulated by miRNAs on these elements. Here, we report that miRNA binding to the 3 UTR can stimulate translation of a reporter gene given that its expression is driven by an HCV-like IRES and that it lacks apoly(A) tail at its 3 extremity.

Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins.

Author(s) : Spencer A, Yu L, Guili V, Reynaud F, Ding Y, Ma J, Jullien J, Koubi D, Gauthier E, Cluet D, Falk J, Castellani V, Yuan C, Rudkin B,
Journal : Int J Mol Sci
2017
Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated proteinkinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequesteringthe cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.

p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis.

Author(s) : Napoletano F, Gibert B, Yacobi-Sharon K, Vincent S, Favrot C, Mehlen P, Girard V, Teil M, Chatelain G, Walter L, Arama E, Mollereau B,
Journal : PLoS Genet
2017
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.

Recombination, meiotic expression and human codon usage.

Author(s) : Pouyet F, Mouchiroud D, Duret L, Semon M,
Journal : Elife
2017
Synonymous codon usage (SCU) varies widely among human genes. In particular, genes involved in different functional categories display a distinct codon usage, which was interpreted as evidence that SCU is adaptively constrained to optimizetranslation efficiency in distinct cellular states. We demonstrate here that SCUis not driven by constraints on tRNA abundance, but by large-scale variation in GC-content, caused by meiotic recombination, via the non-adaptive process of GC-biased gene conversion (gBGC). Expression in meiotic cells is associated witha strong decrease in recombination within genes. Differences in SCU among functional categories reflect differences in levels of meiotic transcription, which is linked to variation in recombination and therefore in gBGC. Overall, the gBGC model explains 70% of the variance in SCU among genes. We argue that the strong heterogeneity of SCU induced by gBGC in mammalian genomes precludes any optimization of the tRNA pool to the demand in codon usage.

TET2 exon 2 skipping is an independent favorable prognostic factor for cytogenetically normal acute myelogenous leukemia (AML): TET2 exon 2 skipping in AML.

Author(s) : Mohamed A, Balsat M, Koering C, Maucort-Boulch D, Boissel N, Payen-Gay L, Cheok M, Mortada H, Auboeuf D, Pinatel C, El-Hamri M, Tigaud I, Hayette S, Dumontet C, Cros E, Flandrin-Gresta P, Nibourel O, Preudhomme C, Thomas X, Nicolini F, Solly F, Guyotat D, Campos L, Michallet M, Ceraulo A, Mortreux F, Wattel E,
Journal : Leuk Res
2017
In AML, approximately one-third of expressed genes are abnormally spliced, including aberrant TET2 exon 2 expression. In a discovery cohort (n=99), TET2 exon 2 skipping (TET2E2S) was found positively associated with a significant reduction in the cumulative incidence of relapse (CIR). Age, cytogenetics, and TET2E2S were independent prognostic factors for disease-free survival (DFS), andfavorable effects on outcomes predominated in cytogenetic normal (CN)-AML and younger patients. Using the same cutoff in a validation cohort of 86 CN-AML patients, TET2E2Shigh patients were found to be younger than TET2low patients without a difference in the rate of complete remission. However, TET2E2Shigh patients exhibited a significantly lower CIR (p<10-4). TET2E2S and FLT3-ITD, butnot age or NPM1 mutation status were independent prognostic factors for DFS and event-free survival (EFS), while TET2E2S was the sole prognostic factor that we identified for overall survival (OS). In both the intermediate-1 and favorable ELN genetic categories, TET2E2S remained significantly associated with prolongedsurvival. There was no correlation between TET2E2S status and outcomes in 34 additional AML patients who were unfit for IC. Therefore our results suggest that assessments of TET2 exon 2 splicing status might improve risk stratification in CN-AML patients treated with IC.

The Affinity of the S9.6 Antibody for Double-Stranded RNAs Impacts the Accurate Mapping of R-Loops in Fission Yeast.

Author(s) : Hartono S, Malapert A, Legros P, Bernard P, Chedin F, Vanoosthuyse V,
Journal : J Mol Biol
2017
R-loops, which result from the formation of stable DNA:RNA hybrids, can both threaten genome integrity and act as physiological regulators of gene expressionand chromatin patterning. To characterize R-loops in fission yeast, we used the S9.6 antibody-based DRIPc-seq method to sequence the RNA strand of R-loops and obtain strand-specific R-loop maps at near nucleotide resolution. Surprisingly, preliminary DRIPc-seq experiments identified mostly RNase H-resistant but exosome-sensitive RNAs that mapped to both DNA strands and resembled RNA:RNA hybrids (dsRNAs), suggesting that dsRNAs form widely in fission yeast. We confirmed in vitro that S9.6 can immuno-precipitate dsRNAs and provide evidence that dsRNAs can interfere with its binding to R-loops. dsRNA elimination by RNase III treatment prior to DRIPc-seq allowed the genome-wide and strand-specific identification of genuine R-loops that responded in vivo to RNase H levels and displayed classical features associated with R-loop formation. We also found that most transcripts whose levels were altered by in vivo manipulation of RNase H levels did not form detectable R-loops, suggesting that prolonged manipulation of R-loop levels could indirectly alter the transcriptome. We discuss the implications of our work in the design of experimental strategies to probe R-loop functions.

The C. elegans SET-2/SET1 histone H3 Lys4 (H3K4) methyltransferase preserves genome stability in the germline.

Author(s) : Herbette M, Mercier M, Michal F, Cluet D, Burny C, Yvert G, Robert V, Palladino F,
Journal : DNA Repair (Amst)
2017
Maintaining the integrity of genetic information across generations is essentialfor both cell survival and reproduction, and requires the timely repair of DNA damage. Histone-modifying enzymes play a central role in the DNA repair process through the deposition and removal of post-translational modifications on the histone tails. Specific histone modification act in the DNA repair process through the recruitment of proteins and complexes with specific enzymatic activities, or by altering the chromatin state at the site of DNA lesions. The conserved SET1/MLL family of histone methyltransferases (HMT) catalyzes methylation of histone H3 on Lysine 4 (H3K4), a histone modification universallyassociated with actively transcribed genes. Studies have focused on the role of SET1/MLL proteins in epigenetic regulation of gene expression. Much less is known on their role in the DNA repair process in a developmental context. Here we showthat SET-2, the Caenorhabditis elegans orthologue of SET1, is required to preserve germline genome integrity over subsequent generations. Animals lacking the SET-2 catalytic subunit show a transgenerational increase in sensitivity to DNA damage-inducing agents that is accompanied by a defect in double-strand break (DSB) repair and chromosome fragmentation. These defects are not due to a failure to activate the DNA damage response (DDR) that allows detection, signaling and repair of DNA lesions, because cell cycle arrest and apoptosis, key components of this pathway, are efficiently induced in set-2 mutant animal. Rather, our results suggest that SET-2 plays a role in the transgenerational maintenance of genome stability by acting in DNA repair downstream of DDR signaling.

The loading of condensin in the context of chromatin.

Author(s) : Robellet X, Vanoosthuyse V, Bernard P,
Journal : Curr Genet
2017
The packaging of DNA into chromosomes is a ubiquitous process that enables living organisms to structure and transmit their genome accurately through cell divisions. In the three kingdoms of life, the architecture and dynamics of chromosomes rely upon ring-shaped SMC (Structural Maintenance of Chromosomes) condensin complexes. To understand how condensin rings organize chromosomes, it is essential to decipher how they associate with chromatin filaments. Here, we use recent evidence to discuss the role played by nucleosomes and transcription factors in the loading of condensin at transcribed genes. We propose a model whereby cis-acting features nestled in the promoters of active genes synergistically attract condensin rings and promote their association with DNA.

Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology.

Author(s) : Pantalacci S, Gueguen L, Petit C, Lambert A, Peterkova R, Semon M,
Journal : Genome Biol
2017
BACKGROUND: Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. RESULTS: We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third,the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. CONCLUSIONS: Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts.

Translational reprogramming of colorectal cancer cells induced by 5-fluorouracil through a miRNA-dependent mechanism.

Author(s) : Bash-Imam Z, Therizols G, Vincent A, Laforets F, Polay Espinoza M, Pion N, Macari F, Pannequin J, David A, Saurin J, Mertani H, Textoris J, Auboeuf D, Catez F, Dalla Venezia N, Dutertre M, Marcel V, Diaz J,
Journal : Oncotarget
2017
5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in colorectal cancer. Previous studies showed that 5-FU modulates RNA metabolism and mRNA expression. In addition, it has been reported that 5-FU incorporates into the RNAs constituting the translational machinery and that 5-FU affects the amount of some mRNAs associated with ribosomes. However, the impact of 5-FU on translational regulation remains unclear. Using translatome profiling, we reportthat a clinically relevant dose of 5-FU induces a translational reprogramming incolorectal cancer cell lines. Comparison of mRNA distribution between polysomal and non-polysomal fractions in response to 5-FU treatment using microarray quantification identified 313 genes whose translation was selectively regulated.These regulations were mostly stimulatory (91%). Among these genes, we showed that 5-FU increases the mRNA translation of HIVEP2, which encodes a transcription factor whose translation in normal condition is known to be inhibited by mir-155. In response to 5-FU, the expression of mir-155 decreases thus stimulating the translation of HIVEP2 mRNA. Interestingly, the 5-FU-induced increase in specificmRNA translation was associated with reduction of global protein synthesis. Altogether, these findings indicate that 5-FU promotes a translational reprogramming leading to the increased translation of a subset of mRNAs that involves at least for some of them, miRNA-dependent mechanisms. This study supports a still poorly evaluated role of translational control in drug response.

When mRNA translation meets decay.

Author(s) : Bicknell A, Ricci E,
Journal : Biochem Soc Trans
2017
Messenger RNA (mRNA) translation and mRNA degradation are important determinantsof protein output, and they are interconnected. Previously, it was thought that translation of an mRNA, as a rule, prevents its degradation. mRNA surveillance mechanisms, which degrade mRNAs as a consequence of their translation, were considered to be exceptions to this rule. Recently, however, it has become clearthat many mRNAs are degraded co-translationally, and it has emerged that codon choice, by influencing the rate of ribosome elongation, affects the rate of mRNAdecay. In this review, we discuss the links between translation and mRNA stability, with an emphasis on emerging data suggesting that codon optimality may regulate mRNA degradation.