Skip to content. | Skip to navigation

Personal tools

Sections
You are here: Home / Teams / Regulation of Genome Architecture and Dynamics of Splicing (ReGArDS) - D. Auboeuf and C. Bourgeois / Publications / An miRNA-DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia.

An miRNA-DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia.

Francoise Solly, Catherine Koering, Aminetou M Mohamed, Delphine Maucort-Boulch, Guillaume Robert, Patrick Auberger, Pascale Flandrin-Gresta, Lionel Ades, Pierre Fenaux, Olivier Kosmider, Emmanuelle Tavernier-Tardy, Jerome Cornillon, Denis Guyotat, Lydia Campos, Franck Mortreux, and Eric Wattel (2017)

Clin Cancer Res, 23(12):3025-3034.

Purpose: Azacitidine inhibits DNA methyltransferases, including DNMT1, and is currently the standard of care for patients with higher-risk myelodysplastic syndrome (HRMDS) or low blast count acute myeloid leukemia (AML).Experimental Design: The expression of 754 miRNAs was compared in azacitidine-resistant and azacitidine-sensitive myelodysplastic syndrome cells. We investigated the role of differentially expressed miRNAs on DNMT1 expression and azacitidine resistance in vitro We next evaluated anti-DNMT1 miRNA expression in pretreatment bone marrow samples derived from 75 patients treated with azacitidine for HRMDS or AML.Results: Seven miRNAs, including 5 that in silico targeted the DNMT1 3' UTR,were repressed in azacitidine-resistant cells in which DNMT1 protein levels weresignificantly higher. Ectopic anti-DNMT1 miRNA expression decreased DNMT1 expression and increased azacitidine sensitivity, whereas specific inhibition ofendogenous anti-DNMT1 miRNAs increased DNMT1 expression and triggered azacitidine resistance. In patients treated with azacitidine, decreased expression of anti-DNMT1 miRNAs was associated with poor outcome. miR-126* had the strongest prognostic impact. Patients with miR-126*low myelodysplastic syndrome had significantly lower response rates (P = 0.04) and higher relapse rates (P = 0.03), as well as shorter progression-free (PFS; P = 0.004) and overall survival(OS; P = 0.004). Multivariate analysis showed that age, miR-126* expression, andrevised International Prognostic Scoring System risk independently predicted PFSand OS. In 15 patient samples collected over time, decreased miRNA expression levels were associated with secondary resistance.Conclusions: A decreased expression of anti-DNMT1 miRNAs might account for azacitidine resistance in HRMDS and AML, and measuring miRNA expression before and during treatment might help predict primary or secondary azacitidine resistance. Clin Cancer Res; 23(12); 3025-34. (c)2016 AACR.

 
automatic medline import

Document Actions