Sur ce site

Sur le Web du CNRS

Accueil du site > Animations Scientifiques > Séminaires 2010 > Olivier Gandrillon — A system’s biology approach to understand stochasticity in gene expression

Olivier Gandrillon — A system’s biology approach to understand stochasticity in gene expression

Orateur :

Olivier Gandrillon, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne

Quand :

Mercredi 27 Janvier à 11h

Où :

C023 (RDC LR6 côté Centre Blaise Pascal)

Titre :

A system’s biology approach to understand stochasticity in gene expression

Résumé :

There is an increasing body of evidence showing the importance of stochasticity in gene expression in various biological phenomena ((Benzer, 1953) ; (Ross et al., 1994) ; (Golding et al., 2005) ; (Elowitz et al., 2002) ; pour des revues récentes voir (Kaern et al., 2005) ; (Raser and O’Shea, 2005) ; (Maheshri and O’Shea, 2007)).), including differentiation ((Wernet et al., 2006) ; (Hume, 2000) ; (Kupiec, 1997) ; (Paldi, 2003) ; (Chang et al., 2008)). We are aiming at understanding the molecular causes of this stochasticity in gene expression in higher eukaryotic cells through a system’s biology approach, combining modeling and experimental evidences. Our modeling focuses on the promoter level, and integrates the complex interplay of the dynamics of transcription factors and their combinatorial mutual influences. In parallel we have started acquiring expression level in single cells in real time, using a model of primary chicken erythrocytic progenitors ((Gandrillon et al., 1999)). Although the completion of the virtuous circle (modeling > experiments > modeling) still lies ahead of us, preliminary evidences indicate that stochasticity is a complex phenomenon that can only be fully understood by a systemic approach.

Benzer, S. (1953) Induced synthesis of enzymes in bacteria analyzed at the cellular level. Biochim Biophys Acta, 11, 383-395.

Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E. and Huang, S. (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544-547.

Elowitz, M.B., Levine, A.J., Siggia, E.D. and Swain, P.S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186.

Gandrillon, O., Schmidt, U., Beug, H. and Samarut, J. (1999) TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors : evidence for an autocrine mechanism. Embo J, 18, 2764-2781.

Golding, I., Paulsson, J., Zawilski, S.M. and Cox, E.C. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025-1036.

Hume, D.A. (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood, 96, 2323-2328.

Kaern, M., Elston, T.C., Blake, W.J. and Collins, J.J. (2005) Stochasticity in gene expression : from theories to phenotypes. Nat Rev Genet, 6, 451-464.

Kupiec, J.J. (1997) A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet, 255, 201-208.

Maheshri, N. and O’Shea, E.K. (2007) Living with noisy genes : how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct, 36, 413-434.

Paldi, A. (2003) Stochastic gene expression during cell differentiation : order from disorder ? Cell Mol Life Sci, 60, 1775-1778.

Raser, J.M. and O’Shea, E.K. (2005) Noise in gene expression : origins, consequences, and control. Science, 309, 2010-2013.

Ross, I.L., Browne, C.M. and Hume, D.A. (1994) Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol Cell Biol, 72, 177-185.

Wernet, M.F., Mazzoni, E.O., Celik, A., Duncan, D.M., Duncan, I. and Desplan, C. (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature, 440, 174-180.

Dans la même rubrique :