Liens transverses ENS de Lyon

Agenda de l'ENS de Lyon

Extensions de Lie p-adiques et (Phi, Gamma)-modules

Date
jeu 11 avr 2019
Horaires

14h00

Lieu(x)

Amphi A

Intervenant(s)

Soutenance de thèse de M. Léo POYETON de l'UMPA sous la direction de M. Laurent BERGER

Langue(s) des interventions

Description générale

Dans cette thèse, on s'intéresse à des aspects théoriques de la théorie des représentations p-adiques du groupe de Galois absolu de K, où K est un corps p-adique, réunis autour de deux axes principaux : d'une part, tenter de caractériser les extensions de Lie p-adiques pour lesquelles on peut définir une théorie des (φ,Γ)-modules, et d'autre part étudier la théorie des (φ,τ)-modules pour obtenir des applications aux représentations p-adiques, et en particulier pour les représentations semi-stables.Cette thèse est constituée de cinq chapitres. Le premier présente les résultats sur les représentations p-adiques, les (φ,Γ)-modules et la théorie de Hodge p-adique nécessaires aux autres chapitres. Dans le deuxième chapitre, on s'intéresse à la question des extensions de Lie p-adiques pour lesquelles on peut définir une théorie des (φ,Γ)-modules, et on montre que, sous l'hypothèse supplémentaire de demander à ce que le Frobenius soit de hauteur finie, ces extensions sont exactement les extensions de Lubin-Tate à extension finie près. Le troisième chapitre expose la théorie des vecteurs localement analytiques nécessaire aux quatrième et cinquième chapitres. Le quatrième chapitre utilise la théorie des vecteurs localement analytiques pour notamment montrer la surconvergence des (φ,τ)-modules associés à des extensions de Kummer, qui était un résultat déjà connu dans le cas où le corps résiduel de K était fini. Dans le cinquième chapitre, on utilise les résultats du quatrième chapitre pour caractériser les représentations semi-stables et potentiellement semi-stables du groupe de Galois absolu de K en fonction de leur (φ,τ)-module, et on montre comment retrouver les invariants Dcris et Dst d'une représentation à partir de leur (φ,τ)-module.

Gratuit
Mots clés
Disciplines