Liens transverses ENS de Lyon

Agenda de l'ENS de Lyon

On topological and dynamical conditions imposing infinitely many periodic orbits in Hamiltonian dynamics

Date
jeu 25 juin 2021
Horaires

14H00

Lieu(x)

Amphi A

Intervenant(s)

Soutenance de M. Simon ALLAIS sous la direction de thèse de M. Marco Mazzucchelli

Langue(s) des interventions

Description générale

Dans cette thèse, nous nous intéressons aux conditions dynamiques ou topologiques imposant l’existence d’un nombre infini de trajectoires périodiques pour certains types de systèmes hamiltoniens. Dans une première partie, nous prolongeons les théories de Givental et Théret basées sur les fonctions génératrices afin d’étudier le cas des espaces projectifs complexes ; nous retrouvons ainsi des résultats très récents sans faire appel à la théorie J-holomorphe. Nous montrons, en particulier, le théorème de Shelukhin démontrant une version homologique de la conjecture de Hofer-Zehnder.
Dans une seconde partie, nous nous intéressons aux flots géodésiques et démontrons de nouveaux résultats apportant des exemples de telles conditions dynamiques ou topologiques. Nous énonçons des conditions sous lesquelles la présence d'une ou deux géodésiques fermées géométriquement distinctes sur un plan, un cylindre ou un ruban de Möbius riemannien complet impose la présence d'une infinité de géodésiques fermées géométriquement distinctes. En particulier, nous montrons qu'un cylindre riemannien complet admet zéro, une ou une infinité de géodésiques fermées homologiquement distinctes ; cela répond à une question d'Alberto Abbondandolo. On prouve aussi que toute variété de Finsler complète de groupe fondamental infini et non homotopiquement équivalente à un cercle possède une infinité de géodésiques géométriquement distinctes joignant n'importe quelle paire de points. Les résultats de cette seconde partie sont partiellement issus d’une collaboration avec Tobias Soethe.

Gratuit
Mots clés
Disciplines