Understanding the dynamics of a quantum many-body system is a central objective of modern physics. In this manuscript, we theoretically study the out-of-equilibrium dynamics dictated by time-independent Hamiltonians describing ensembles of interacting S = 1/2 spins (or qubits) on a lattice. We mainly examine XXZ models with various (from nearest-neighbor to long-range) interactions realizable in many platforms for quantum simulation. We characterize the entangling power of relevant models by means of accurate numerical techniques, linking the dynamical occurrence of entangled states useful for technological applications to spectral features and to the thermodynamics of the systems of interest. Furthermore, we demonstrate the quench spectroscopy protocol, which allows us to reconstruct the dispersion relation of the elementary excitations of a given Hamiltonian from equal-time correlation functions.
Devant un jury composé de :
Madame Patrizia VIGNOLO, Professeur des universités
Monsieur Fabien ALET, Directeur de recherche
Monsieur Markus HOLZMANN, Directeur de recherche
Monsieur Bruno LABURTHE TOLRA, Directeur de recherche
Monsieur Peter HOLDSWORTH, Professeur des universités
Section CNU n°28 - Milieux Denses et Matériaux, Discipline : PHYSIQUE
Gratuit
Disciplines