Outils

INFO4222 : Fondements de l'Apprentissage

INFO4222 : Fondements de l'Apprentissage

Foundations of Machine learning

Responsable(s) :
  • Daniel Hirschkoff
Enseignant(s) :
  • Elisa Riccietti
  • Titouan Vayer

Niveau

M1+M2

Discipline

Informatique

ECTS
3.00
Période
2e semestre
Localisation
Site Monod
Année
2024

Public externe (ouverts aux auditeurs de cours)

Informations générales sur le cours : INFO4222

Content objectif

The aim of this course is to introduce the basic theory and algorithms of Machine Learning. Topics to be taught : 

  • General introduction to Machine Learning: learning settings, curse of dimensionality, overfitting/underfitting, etc.
  • Overview of Supervised Learning Theory: True risk versus empirical risk, loss functions, regularization, bias/variance trade-off, complexity measures, generalization bounds.
  • Linear/Logistic/Polynomial Regression: batch/stochastic gradient descent, closed-form solution.
  • Sparsity in Convex Optimization.
  • Support Vector Machines: large margin, primal problem, dual problem, kernelization, etc.
  • Neural Networks, Deep Learning.
  • Theory of boosting: Ensemble methods, Adaboost, theoretical guarantees.
  • Non-parametric Methods (K-Nearest-Neighbors)
  • Domain Adaptation
  • Optimal Transport