Cette thèse est consacrée à l’étude statistique des systèmes complexes à travers l’analyse de signaux expérimentaux, de signaux synthétiques et de signaux générés à partir de modèles théoriques. On a choisi la turbulence comme paradigme d’étude en raison de ses propriétés: dynamique non linéaire, comportement multi-échelle, cascade d’énergie, intermittence ... Afin de faire une caractérisation statistique d’un système complexe on s’intéresse à l’étude de la distribution (fonction de densité de probabilité), des corrélations et dépendances, et des relations de causalité de Wiener, des signaux qui décrivent le système. La théorie de l’information apparaît comme un cadre idéal pour developper ce type d’analyse.
Dans le cadre de la théorie de l’information on a développé deux méthodologies, différentes mais reliées, pour analyser les propriétés d’auto similarité d’un système complexe, et plus précisément de la turbulence. La première méthodologie est basée sur l’analyse des incréments du processus étudié, avec l’entropie de Shannon et la divergence de Kullback-Leibler. La deuxième méthode, qui permet d’analyser des processus non stationnaires, est basée sur l’analyse du processus avec le taux d’entropie de Shannon. On a étudié la relation entre les deux méthodologies, lesquelles caractérisent la distribution d’information du système et la déformation de la distribution des incréments, à travers les échelles.
Gratuit
Disciplines