How cracks are hot and cool: a burning issue for paper

How cracks are hot and cool: a burning issue for paper

Tue, 07/03/2017

Publication

Publication in Soft Matter


Abstract
Material failure is accompanied by important heat exchange, with extremely high temperature – thousands of degrees – reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes.
Therefore, to better understand catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat.
By monitoring the slow crack growth in paper sheets using an infrared camera, we measure a significant fraction α = 12% ± 4%. Besides, we show that (self-generated) heat accumulation could weaken our samples by microfiber combustion, and lead to a fast crack/dynamic failure/regime.
References: How cracks are hot and cool: a burning issue for paper. Renaud Toussaint, Olivier Lengliné, Stéphane Santucci, Tom Vincent-Dospital, Muriel Naert-Guillot et Knut Jørgen Måløy.
Soft Matter, 2016,12, 5563-5571; DOI: 10.1039/C6SM00615A
Subject(s)