A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis

A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis

Thu, 14/04/2016


Laboratory of Plant Reproduction and Development

A research team of the Laboratory of Plant Reproduction and Development (RDP - Inra, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1), has just revealed that organs sense their own growth and can therefore control their final shape.


  • A stereotypical growth pattern generates tensile stress at the sepal tip
  • A supracellular microtubule alignment forms along maximal tension at the sepal tip
  • The strength of the mechanical feedback can modulate sepal shape
  • The microtubule response to tension acts as an organ shape-sensing mechanism

How organs reach their final shape is a central yet unresolved question in developmental biology. Here we investigate whether mechanical cues contribute to this process. We analyze the epidermal cells of the Arabidopsis sepal, focusing on cortical microtubule arrays, which align along maximal tensile stresses and restrict growth in that direction through their indirect impact on the mechanical anisotropy of cell walls. We find a good match between growth and microtubule orientation throughout most of the development of the sepal.
However, at the sepal tip, where organ maturation initiates and growth slows down in later stages, microtubules remain in a configuration consistent with fast anisotropic growth, i.e., transverse, and the anisotropy of their arrays even increases.
To understand this apparent paradox, we built a continuous mechanical model of a growing sepal. The model demonstrates that differential growth in the sepal can generate transverse tensile stress at the tip.
Consistently, microtubules respond to mechanical perturbations and align along maximal tension at the sepal tip. Including this mechanical feedback in our growth model of the sepal, we predict an impact on sepal shape that is validated experimentally using mutants with either increased or decreased microtubule response to stress. Altogether, this suggests that a mechanical feedback loop, via microtubules acting both as stress sensor and growth regulator, channels the growth and shape of the sepal tip.
We propose that this proprioception mechanism is a key step leading to growth arrest in the whole sepal in response to its own growth.
A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis. Nathan Hervieux, Mathilde Dumond, Aleksandra Sapala, Anne-Lise Routier-Kierzkowska, Daniel Kierzkowski, Adrienne H.K. Roeder, Richard S. Smith, Arezki Boudaoud, and Olivier Hamant, Current Biology.
April 14, 2016


Useful links

Read the publication in Current Biology