Publication in PNAS
Aegagropilae
Abstract
Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass (Posidonia oceanica) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.
Video: Aegagropilae structure revealed by X-ray tomography
By Sébastien Moulinet
References: G. Verhille, S. Moulinet, N. Vandenberghe, M. Adda-Bedia and P. Le Gal; Structure and mechanics of aegagropilae fiber network. PNAS, vol. 114 no. 18 (4607-4612). Doi : 10.1073/pnas.1620688114
Structure and mechanics of aegagropilae fiber network (publication in PNAS)
Laboratoire de physique
Abstract
Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass (Posidonia oceanica) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.
Video: Aegagropilae structure revealed by X-ray tomography
By Sébastien Moulinet
References: G. Verhille, S. Moulinet, N. Vandenberghe, M. Adda-Bedia and P. Le Gal; Structure and mechanics of aegagropilae fiber network. PNAS, vol. 114 no. 18 (4607-4612). Doi : 10.1073/pnas.1620688114
Useful links
Structure and mechanics of aegagropilae fiber network (publication in PNAS)
Laboratoire de physique
Subject(s)
Keywords